Copyright | (c) Harm Brouwer and Noortje Venhuizen |
---|---|
License | Apache-2.0 |
Maintainer | me@hbrouwer.eu, n.j.venhuizen@rug.nl |
Stability | provisional |
Portability | portable |
Safe Haskell | Safe-Inferred |
Language | Haskell98 |
Data.PDRS.DataType
Contents
Description
PDRS data type
Exported
Projective Discourse Representation Structure.
Constructors
LambdaPDRS ((DRSVar, [DRSVar]), Int) | A lambda |
AMerge PDRS PDRS | An assertive merge between two |
PMerge PDRS PDRS | A projective merge between two |
PDRS PVar [MAP] [PRef] [PCon] | A |
Instances
Read PDRS # | |
Show PDRS # | Derive and instance of the Show typeclass for |
Eq PDRS # | |
AbstractPDRS PDRS # | |
Defined in Data.PDRS.LambdaCalculus | |
PDRSAtom PDRS # | |
Defined in Data.PDRS.LambdaCalculus | |
ShowablePDRS PDRS # | Derive appropriate instances of |
Defined in Data.PDRS.Show | |
ShowablePDRS p => Show (PDRS -> p) # | |
ShowablePDRS p => Show ((PDRSRef -> PDRS) -> p) # | |
ShowablePDRS p => ShowablePDRS (PDRS -> p) # | |
Defined in Data.PDRS.Show | |
ShowablePDRS p => ShowablePDRS ((PDRSRef -> PDRS) -> p) # | |
Defined in Data.PDRS.Show |
A PDRS
referent.
Constructors
LambdaPDRSRef ((DRSVar, [DRSVar]), Int) | A lambda PDRS referent (a variable, the set of referents to be applied to the referent, and its argument position) |
PDRSRef DRSVar | A PDRS referent |
Instances
Read PDRSRef # | |
Show PDRSRef # | |
Eq PDRSRef # | |
PDRSAtom PDRSRef # | |
Defined in Data.PDRS.LambdaCalculus | |
ShowablePDRS p => Show (PDRSRef -> p) # | Derive appropriate instances of |
ShowablePDRS p => Show ((PDRSRef -> PDRS) -> p) # | |
ShowablePDRS p => ShowablePDRS (PDRSRef -> p) # | |
Defined in Data.PDRS.Show | |
ShowablePDRS p => ShowablePDRS ((PDRSRef -> PDRS) -> p) # | |
Defined in Data.PDRS.Show |
PDRS relation
Instances
Read PDRSRel # | |
Show PDRSRel # | |
Eq PDRSRel # | |
ShowablePDRS p => Show (PDRSRel -> p) # | |
ShowablePDRS p => ShowablePDRS (PDRSRel -> p) # | |
Defined in Data.PDRS.Show |
A PDRS
condition.
Constructors
Rel PDRSRel [PDRSRef] | A relation defined on a set of referents |
Neg PDRS | A negated |
Imp PDRS PDRS | An implication between two |
Or PDRS PDRS | A disjunction between two |
Prop PDRSRef PDRS | A proposition |
Diamond PDRS | A possible |
Box PDRS | A necessary |