
Two Models of Meaning: Revisiting the Principle of
Compositionality from the Neurocognition of Language

RUNNING HEAD: Two Models of Meaning

Noortje J. Venhuizen1∗, Harm Brouwer1∗

1Department of Cognitive Science and Artificial Intelligence, Tilburg University, Warandelaan 2, 5037

AB Tilburg, The Netherlands
∗Correspondence should be addressed to: Noortje Venhuizen (n.j.venhuizen@tilburguniversity.edu) or

Harm Brouwer (h.brouwer@tilburguniversity.edu)

Keywords: language comprehension, lexical semantics, utterance meaning, compositionality,

Retrieval-Integration theory

Manuscript accepted for publication in Psychology of Learning and Motivation

Copyright © 2025 Elsevier Inc. All rights are reserved, including those for text and data

mining, AI training, and similar technologies. This paper is not the copy of record and

may not exactly replicate the authoritative document. The final article is available, upon

publication, at: https://doi.org/10.1016/bs.plm.2025.07.007

https://doi.org/10.1016/bs.plm.2025.07.007


Two Models of Meaning

Abstract

A core tenet in linguistic theory is the principle of compositionality, which holds that

the meaning of a multi-word utterance directly derives from the meanings of the indi-

vidual words, and the rules by which they are combined. Semantic theories of lexical

word meaning and compositional utterance meaning have, however, developed into sur-

prisingly distinct fields of study. Lexical semantic theories of word meaning focus on

modeling conceptual structure and similarity, e.g., the words “tea” and “coffee” are

similar in that they both describe drinkable substances. Formal semantic theories fo-

cusing on compositional utterance meaning, in turn, focus on modeling sentence- and

discourse-level entailments and inferences, e.g., “drinking hot coffee” entails “drinking

coffee”. Critically, attempts at unifying models of lexical and compositional seman-

tics have proven challenging and often yield complex frameworks, in which word- and

utterance-level meanings are patched together to form a whole, without fully integrating

their semantic contributions. We here revisit the principle of compositionality from the

neurocognition of language, which reveals that the human comprehension system har-

nesses distinct models for lexical and compositional meaning, and that these models are

critically intertwined in a cyclic architecture for language comprehension. Within this

architecture, compositionality arises from a non-linear mapping of lexical semantic rep-

resentations into a space for compositional semantic meaning, resulting in a continuous,

expectation-based, and spatiotemporally-extended notion of compositional integration.

This novel perspective on compositionality, combining linguistic and neurocognitive the-

ory, paves way for more integrative approach towards modeling the meaning of words

and utterances.
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1 Introduction

One of the core topics in linguistic theory has traditionally been the question of how

the meaning of complex multi-word utterances is derived from the meaning of the indi-

vidual words that constitute these utterances. In the traditional view, there is a clear

separation between the syntactic principles that determine how words can be combined

to form complex utterances, and the semantic principles that define how meanings are

represented and constructed. This distinction is colorfully illustrated in the famous ex-

ample “Colorless green ideas sleep furiously”, which was introduced as an example of

a sentence that is grammatically correct, yet nonsensical (Chomsky, 1957, p.15). This

distinction between syntax and semantics has long been a guiding principle in answering

the overarching question of how meaning is assigned to linguistic input. Specifically, it

has led to the fundamental principle that the meaning of a complex expression is fully

determined by the meanings of the individual words that constitute the expression, and

the way that they are combined (Partee, 1995). This principle of compositionality lies

at the core of current approaches in semantic theory, which presuppose a close relation-

ship between the lexical meanings of individual words and the compositional meanings

assigned to sentences and utterances; that is, utterance-level meaning is directly derived

from the meanings of the individual words and the syntactic rules by which they are

combined.

The close formal relationship between lexical and compositional meaning that is

assumed by the principle of compositionality has some desirable properties, as it explains

the observation that human language users are able to produce and understand an

infinitely large number of complex expressions that they have not encountered before

(referred to as productivity of language use), and that they can systematically combine

and reorder the constituents of complex expressions into novel utterances (systematicity

of language use). While the principle of compositionality takes center stage in explaining
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these premises of language use, semantic theories that study lexical meaning at the level

of words and and those that focus on compositional meaning at the level of sentences

and discourses have developed into surprisingly distinct fields of study.

Lexical semantic (LS) theories aim to model the meaning of individual words. In par-

ticular, distributional approaches to LS model word meaning as vector representations

derived from semantic features, capturing the similarities and dissimilarities between

concepts in high-dimensional vector spaces: e.g., the concepts “tea” and “coffee” could

be modeled with vectors that encode their similarity in that they are both drinkable

substances, but also their dissimilarity in that one is made from leaves and the other

from beans. To formalize the principle of compositionality, there have been numerous

attempts to combine these LS representations into compositional semantic (CS) rep-

resentations spanning multi-word utterances, for instance through vector averaging or

multiplication (e.g., Mitchell and Lapata, 2010). However, these approaches fall short

in approximating human-like compositionality, (Pavlick, 2022). Formal semantic frame-

works, by contrast, fare a lot better in modeling the CS meaning of multi-word ut-

terances. These formal semantic frameworks are typically grounded in mathematical

logic, where LS meanings are modeled as functions—thereby sacrificing their conceptual

richness and structure—and composition is modeled as function application (e.g., the

meaning of “hot coffee” results from applying the function “hot” to the argument “cof-

fee”). While these frameworks neatly capture CS meaning in terms of truth-conditional

entailment and inference, they do not naturally capture the similarities and dissimilar-

ities between lexical items, motivating approaches that aim to introduce distributional

LS meanings into such frameworks (Garrette et al., 2014; Asher et al., 2016; Beltagy

et al., 2016). While these hybrid approaches may conceptually come closest to imple-

menting the principle of compositionality, they do often yield rather ‘Frankensteinian’

frameworks in which distributional and formal semantics are patched together to form a

whole, while still living in distinct representational spaces, thereby not fully integrating
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their semantic contributions.

These attempts at implementing the principle of compositionality by combining LS

and CS meaning into a single semantic framework raise an important question, namely

whether integrating these fundamentally different models of meaning is the right way

forward. One way to address this question is to turn to how the human brain represents

and constructs meaning. Advances in the neurocognition of language comprehension

paint a picture supporting a perspective in which LS and CS meaning do indeed co-exist

and interact, and recent neurocomputational modeling work suggests compositionality is

achieved by mapping representations from an LS meaning space into a seperate space for

CS meaning. Neurocognitive theory, informed by empirical and modeling results, thus

suggests that LS and CS meaning do indeed inhabit distinct meaning spaces, but that

they are also critically intertwined in the compositional comprehension process: incre-

mental meaning construction involves retrieval of LS meaning, informed by the unfolding

CS utterance context, which is accordingly integrated into an updated representation of

the CS utterance meaning (Brouwer et al., 2012, 2017, 2021a). We therefore argue that

the traditional notion of compositionality, which is grounded in syntactic combinatory

rules, needs to be revised into a more dynamic notion of compositional integration, and

we discuss the theoretical and empirical implications of this proposal.

2 The linguistic perspective: How meaning can be mod-

eled

In the study of linguistic meaning, a variety of formal frameworks has been proposed

to model meaning at the level of words, sentences, and larger discourses. While these

approaches generally agree upon the principle that these levels of meaning are closely

related to each other, the core phenomena studied within these frameworks vary widely,

ranging from word-level similarity and conceptual structure to sentence-level entailments,
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discourse structure and ‘world knowledge’-driven inference. Attempts at implementing

the principle of compositionality by integrating these approaches into a single semantic

framework have proven challenging. This results in a state of affairs that suggests that LS

and CS should instead be treated as complementary, but interacting, models of meaning.

2.1 Lexical semantics: Conceptual knowledge and structure

Semantic formalisms that aim to capture word-level (LS) meaning from a cognitive per-

spective are typically strongly grounded in the study of human semantic memory: the

collection of knowledge that allows humans to not only use and understand language,

but also to navigate the world around us, e.g., by recognizing and classifying objects. A

core notion that these approaches aim to capture is the observation that the conceptual

knowledge associated with individual words is both gradient and structured: concepts

are related to each other to different degrees, which is quantified as semantic similarity

(e.g., “bird” is more similar to “dog” than to “spoon”), and these relations are hier-

archical in nature, in the sense that particular concepts are more general than others

(e.g., “bird” subsumes both “robin” and “ostrich”). Theories of lexical meaning aim to

capture this conceptual knowledge and structure by assuming semantic features as the

representational currency for conceptual knowledge (McRae et al., 2005).

Semantic features constitute the dimensions of the LS representations and may take

different forms (see Frisby et al., 2023). A first set of approaches intuitively concep-

tualizes these semantic features as identifying discrete categories or local features; for

instance, the dimensions of the semantic representation of “bird” may indicate the pres-

ence/absence of features such as has wings, can fly, or has eyes. Each semantic repre-

sentation, then, represents a vector in a high-dimensional semantic space, which can be

directly compared to other representations using various vector-based metrics to quantify

semantic similarity. The advantage of these approaches is that semantic similarity is not

only quantifiable, but that the dimensions are also directly interpretable as independent
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categories or features.

An alternative approach to capturing semantic features for LS is grounded in a

theoretical foundation that has become known as the Distributional Hypothesis—in

the formulation of J. R. Firth: “You shall know a word by the company it keeps!”

(Firth, 1957, p.11). Based on the idea that “the meaning of words lies in their use”

(Wittgenstein, 1953, pp. 80, 109), the Distributional Hypothesis assumes that words that

occur in similar contexts will have similar meanings (see also Turney and Pantel, 2010;

Clark, 2012; Erk, 2012; Lenci, 2018). This hypothesis has informed various influential

implementations in which the dimensions of the resulting LS representations capture

lexical co-occurrence information across linguistic contexts, i.e., sentences or documents

(e.g., Latent Semantic Analysis, LSA; Landauer and Dumais, 1997, hyperspace analogue

of language, HAL; Burgess, 1998, and dependency vectors, DV; Padó and Lapata, 2007).

In more recent instantiations of the Distributional Hypothesis, LS vectors are word

embeddings with abstract dimensions that are not directly interpretable, derived for

instance from neural prediction models (e.g., word2vec, Mikolov et al., 2013a,b; GloVe,

Pennington et al., 2014; ELMo, Peters et al., 2018; BERT, Devlin et al., 2019; GPT,

Radford et al., 2019).

The resulting distributional lexical semantic (DLS) representations have been ex-

tremely successful in capturing conceptual knowledge and structure in terms of semantic

similarity. This has inspired investigations into how they can be combined composition-

ally into utterance-level CS representations, for instance, by using vector operations as a

proxy for semantic composition (Mitchell and Lapata, 2010), or by combining DLS repre-

sentations into more complex structures to arrive at CS meaning (Baroni and Zamparelli,

2010; Coecke and Clark, 2011; Socher et al., 2012; Grefenstette and Sadrzadeh, 2015).

While these approaches have shown some promise, for instance in modeling adjective-

noun modification (Baroni et al., 2014; Vecchi et al., 2017), it has proven challenging to

capture higher level semantic composition, supporting the conclusion that feature-based
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LS representations are “good at lexical semantics, bad at composition” (Pavlick, 2022,

p. 464).

2.2 Compositional semantics: The meaning of multi-word utterances

Formal semantic frameworks for CS meaning focus on modeling the construction and

interpretation of phrases, sentences and multi-sentence discourses. Starting from the

idea that sentences (or: propositional-level meanings) can be either true or false with

respect to a state of affairs in the world, approaches in formal semantics focus on de-

scribing sentence meanings with respect to formal model structures that describe such

situations. In its simplest form, a model structure is defined as a set of entities, called

the universe U , and an interpretation function I that assigns entities from the universe

(or sets thereof) to formal representations of linguistic expressions (e.g., the interpreta-

tion I(bird) describes the subset of entities in the universe U that are birds). Sentences

can thus be assigned truth values within these model structures via a translation to

some logical representation of their meaning, which in turn obtains a formal model in-

terpretation via the interpretation function (e.g., “Tweety is a bird” is true if and only

if “Tweety” refers to an entity in the universe that is also in the set of birds). Sentence

meaning, then, is defined in terms of the truth conditions with respect to formal model

structures: the constraints under which the logical representation of the sentence is as-

signed the truth value “true” in the model—in other words, the conditions under which

the model satisfies the meaning of the sentence. Two sentences are assumed to express

the same meaning if they have the same truth conditions, i.e., they are satisfied by the

same models. This critically allows for a formalization of the logical entailment relation

between individual sentences: Sentence A is logically entailed by sentence B if any model

that satisfies the meaning of sentence B also satisfies the meaning of sentence A (e.g.,

the sentence “Mike paid” is logically entailed by the sentence “Mike ordered and paid”).

Approaches in semantic theory differ in terms of the logical framework that is used to
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represent meaning as well as in terms of the complexity of the underlying model struc-

tures, which may capture, for instance, event structure (Davidson, 1969) or a notion

of time (Kamp, 1980). Furthermore, traditional approaches have formalized composi-

tional semantic construction in a static manner, assuming independent representations

for lexical constituents (e.g., as lambda functions) which are then combined into com-

positional representations through function application (Montague, 1970). More recent

semantic theorizing, however, has embraced a dynamic view toward meaning construc-

tion, emphasizing the incremental nature of linguistic processing in terms of the growth

of semantic information over time (Nouwen et al., 2022).

2.2.1 Dynamic semantics: Discourse structure and composition

A dynamic semantic framework that is particularly amenable to different variations

of model-theoretic complexity is Discourse Representation Theory (DRT; Kamp, 1981;

Kamp and Reyle, 1993; Kamp et al., 2011). DRT is a mentalist framework for formal

semantics that provides abstract representations corresponding to the types of mental

representations assumed to underlie human language comprehension, often referred to

as mental models (Johnson-Laird, 1983) or situation models (Zwaan and Radvansky,

1998). The basic meaning units in DRT are called Discourse Representation Structures

(DRSs), which are formally defined as a tuple ⟨U, C⟩ consisting of a set of entities U and

a set of conditions on these entities C. The conditions in a DRS may describe simple

first-order properties or relations, but may themselves also include logical combinations

of DRSs. DRSs are often visualized using box-representations such as in example (1)

below, where the universe of the DRS ({x,y}) is represented in the top of the box and

the conditions are described as first-order predicates over these variables:

(1) Mike called the waiter.

9 © 2025 Elsevier Inc. doi: 10.1016/bs.plm.2025.07.007
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x y

x = Mike

waiter(y)

call(x,y)

Each DRS can be formally assigned truth conditions relative to a model structure,

via either a translation to first-order logic or via an embedding function (Kamp, 1981).

A critical aspect of DRT is that it formalizes meaning at the discourse rather than the

sentence level; each DRS not only defines the truth conditions for a given sentence,

but also provides a context for any upcoming semantic content, e.g., in terms of the

referents that are available for pronominal reference. For example, a discourse in which

the sentence above is continued with a novel sentence containing a referential expression,

is formalized as an updated DRS in which the initial meaning representation is extended

with the novel semantic information. This is effectuated as a ‘merge’ operation (+)

between DRSs:

(2) Mike called the waiter. He did not order any food.

x y

x = Mike

waiter(y)

call(x,y)

+
¬

z

food(z)

order(x,z)

=

x y

x = Mike

waiter(y)

call(x,y)

¬

z

food(z)

order(x,z)

.

The DRS resulting from this merge operation combines the universes of both DRSs, {x,y}

for the first DRS and the empty set for the second DRS, as well as their conditions.

DRT thus captures discourse-level meaning in terms of formal truth-conditional rep-

resentations, while at the same time offering a dynamic semantic framework for mean-

ing construction, in which novel semantic information is continuously merged with the

10 © 2025 Elsevier Inc. doi: 10.1016/bs.plm.2025.07.007
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discourse context established so far. To arrive at these representations in a composi-

tional manner, Muskens (1996) defines a version of DRT that employs lambda calculus

to formalize how word-level meanings (formalized as functions in the form of lambda

expressions) combine into sentence- and discourse-level DRS representations. Such com-

positional formulations, however, still assume a relatively static representation of lexical

meaning, where a word like “waiter” is interpreted relative to a formal model structure as

the set of entities that satisfy this predicate. This means that lexical-level similarities, as

for instance modeled in distributional approaches to lexical semantics, are not naturally

captured within these representations. Another important limitation of formal semantic

approaches such as DRT is that that these logical frameworks do not naturally allow

for capturing defeasible inferences that go beyond the literal meaning of the individual

expressions—although various extensions of DRT have been proposed that do capture

presuppositions and implicatures (e.g., Layered DRT; Geurts and Maier, 2013, Projec-

tive DRT; Venhuizen et al., 2018), as well as rhetorical structure (Segmented DRT; Asher

and Lascarides, 2003). In particular, the interpretation of DRS representations in terms

of model-derived truth conditions does not allow for capturing defeasible probabilistic

inferences that reflect world knowledge-driven expectations; for instance, the inference

that it is likely that “Mike” is in a “restaurant” in example (2) above. In order to capture

such world knowledge-driven inferences, recent work has sought to combine insights from

model-theoretic semantics with those deriving from distributional approaches to develop

a framework for expectation-based semantics, which offers distributional representations

of CS meaning at the level of propositions (Venhuizen et al., 2019a, 2022).

2.2.2 Expectation-based semantics: World knowledge-driven inferencing

Distributional Formal Semantics (DFS; Venhuizen et al., 2019a, 2022) is a distributional

framework for meaning representation that builds on neurocognitive models of story com-

prehension (Golden and Rumelhart, 1993; Frank et al., 2009) to capture propositional

11 © 2025 Elsevier Inc. doi: 10.1016/bs.plm.2025.07.007
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meanings in terms of co-occurrences in the world. Conceptually, DFS defines a meaning

space in terms of different states-of-affairs in the world, in which propositions such as

enter(mike,bar), describing “Mike entering a bar”, may or may not co-occur; e.g., en-

ter(mike,bar) may co-occur with order(mike,cola), but not with enter(mike,restaurant).

The DFS meaning representations that derive from this space are vectors that are com-

positional at the propositional level, in that meanings can be combined using logical

operators, as well as probabilistic in the sense that they inherently capture the likeli-

hood that meanings (co-)occur within the meaning space.

More formally, DFS defines meaning relative to a (finite) set of formal model struc-

tures MP, which together constitute the meaning space based on a finite set of proposi-

tions P. Each model constitutes an observation of a state of affairs in the world, in that

each M ∈ MP is a first-order model that describes which of the propositions in P are

true in that model. The set of models MP can thus be interpreted as a set of possible

worlds, in which different constellations of propositions may co-occur (in the tradition

of Carnap, 1988). The meaning of an individual proposition, then, is defined relative to

this set of models (or possible worlds); that is, the meaning of a (simple or complex)

proposition p ∈ P is defined by a vector JpKMP = v⃗(p) that assigns 1 to each M ∈ MP

that satisfies p, and 0 otherwise (Venhuizen et al., 2022).

Critically, as propositional meaning is directly defined in terms of satisfaction with

respect to formal model structures, DFS representations are fully compositional at the

propositional level. This means that the meaning of any logical combination of proposi-

tions can be derived from the meaning space as operations over the underlying meaning

vectors. Specifically, we can define the meaning of the negation of a given proposition p

as a vector operation: J¬pKMP = 1 − v⃗(p), which results in a vector that is the comple-

ment of v⃗(p) and that assigns 0 to each M ∈ MP that satisfies p, and 1 otherwise. The

conjunction of two propositions p and q, in turn, is defined as component-wise vector

multiplication: Jp ∧ qKMP = v⃗(p)v⃗(q), such that the resulting vector v⃗(p ∧ q) assigns 1 to

12 © 2025 Elsevier Inc. doi: 10.1016/bs.plm.2025.07.007
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each M ∈ MP that satisfies both p and q, and 0 otherwise. Together, these negation and

conjunction operators allow for the derivation of any arbitrarily complex combination of

propositions, as well as for definitions of existential quantification (e.g., “someone orders

cola”) and universal quantification (“everyone pays”); see Venhuizen et al. (2022) for

details.

The set of models MP constitutes a meaning space that encodes the meaning of

(complex) propositions in terms of their co-occurrence with other propositions: propo-

sitions that co-occur across a large set of models (observations of states-of-affairs in the

world) will result in similar meaning vectors. Critically, while propositional meaning is

defined in terms of binary vectors relative to the meaning space MP, this space actu-

ally constitutes a continuous vector space RMP . As a result, the meaning space defines

meanings not only for binary propositional vectors, but also for real-valued vectors that

do not directly correspond to (combinations of) propositions; rather, these vectors can

be described as representing meanings that may lie in between the meanings of propo-

sitional expressions. As will become apparent below, these real-valued vectors represent

sub-propositional meanings (e.g., “bartender brings” which still requires an object) that

can be used to express the incremental construction of propositional-level meaning (e.g.,

by adding “fries” to form bring(bartender,fries), which is a full proposition).

All meaning vectors that can be defined in the DFS meaning space inherently en-

code probabilistic knowledge about (co-)occurrence in the world that is defined by the

meaning space; propositions that are true in many models can be considered to have

a high probability in the world. Hence, the probability P (a) of a (propositional or

sub-propositional) expression a in this space is defined as follows:

P (a) = 1
|MP|

∑
i

v⃗i(a) (1)

That is, the probability of a is defined as the fraction of models (observations) in which

13 © 2025 Elsevier Inc. doi: 10.1016/bs.plm.2025.07.007
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a is satisfied. This definition can be straightforwardly extended to a definition of the

conditional probability of a given b: P (a|b) = P (a∧ b)/P (b). This means that the repre-

sentations in DFS allow for calculating the conditional probability of any expression in

relation to all other (propositional or sub-propositional) meanings that can be defined

within the meaning space. As a result, we can use this probabilistic nature of the mean-

ing representations to quantify the extent to which expressions are inferred from each

other. Specifically, if the conditional probability P (a|b) equals 1 for some propositional

meanings a and b, this means that a is satisfied in all the models that satisfy b; in other

words, a is entailed by b (b ⊨ a). Furthermore, by comparing the conditional proba-

bility P (a|b) to the prior probability P (a), the degree to which knowing b increases or

decreases the certainty in a can be quantified, which gives us a notion of probabilistic

inference (Venhuizen et al., 2022; Frank et al., 2009):

inference(a, b) =


P (a | b) − P (a)

1 − P (a) if P (a | b) > P (a)

P (a | b) − P (a)
P (a) otherwise

(2)

This inference score results in a value between −1 and 1, such that negative values

indicate that a is negatively inferred from b (or: knowing b decreases the probability

that a is the case) and positive values indicate that a is positively inferred from b (or:

knowing b increases the probability that a is the case). Hence, an inference score of 0

indicates that a is probabilistically independent of b, an inference score of 1 indicates

positive entailment (b ⊨ a) and an inference score of −1 indicates negative entailment

(b ⊨ ¬a).

Let us turn to an example to illustrate how this mathematical machinery can be used

to quantify the inferences and expectations in a concrete meaning space. Figure 1 plots

the inference score for a subset of the propositions that are defined in the meaning space

presented in Venhuizen et al. (2022). Propositions take the form of predicated expres-

sions, such that order(mike,cola) corresponds to the meaning of “Mike orders cola”. This

14 © 2025 Elsevier Inc. doi: 10.1016/bs.plm.2025.07.007
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heatmap shows the value of inference(a,b), ranging from −1 (red) to +1 (green), for each

propositional expression a given itself and each other propositional expression b. The

green diagonal shows that each proposition is positively entailed by itself. Furthermore,

certain propositions are negatively entailed by each other (e.g., enter(mike,bar) given en-

ter(mike,restaurant), and vice versa), which reflects the fact that in the meaning space

these propositions never co-occur. All graded values reflect probabilistic inferences; for

instance, enter(mike,bar) is inferred negatively from order(mike,salad). Hence, these

inferences reflect how the meaning vectors that derive from the DFS meaning space

capture rich world knowledge based on propositional co-occurrences—in other words,

to paraphrase the famous formulation of the Distributional Hypothesis by Firth (1957):

you shall know a proposition by the company it keeps in the world.

An important observation to make here is that the inferences made within such a

propositional meaning space do not directly align with word-level LS inferences informed

by semantic similarity. For instance, while “bar” and “restaurant” may be elicit similar

associations on the lexical level (e.g., about ordering food and drinks), the propositions

in which these expressions occur are not semantically similar within the DFS meaning

space, due to the (relatively) low co-occurrence of these propositions across the observa-

tions of states-of-affairs in the world. This means that the inferences that can be drawn

from the DFS meaning space are distinct from those that can be drawn from lexical

co-occurrences or componential analysis.

2.3 Two models of meaning?

The linguistic perspective delineates two models of meaning. On the one hand, DLS

uses feature-based representations to model conceptual knowledge and structure. While

these approaches do indeed successfully capture human intuitions about conceptual sim-

ilarity, it has proven challenging to define compositionality over such LS representations

(Pavlick, 2022). In fact, one can even raise the question if it is possible to express all of
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in Venhuizen et al. (2022). Bright green cells indicate positive entailment between propositions (b ⊨
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NC-ND 4.0) from Venhuizen et al. (2022).
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the complexities of compositional meaning within a meaning space for LS, of which the

dimensions are assumed to represent some form of componential semantic features of in-

dividual concepts. Dynamic semantic frameworks, like DRT, on the other hand, harness

formal model theory to construct CS representations that successfully capture truth-

conditional entailment relations. More recent expectation-based semantic frameworks,

like DFS, extend this truth-conditional approach to capturing ‘world knowledge’-driven

inferences in terms of probabilistic entailment relations. Neither of these formal semantic

approaches to CS, however, captures the conceptual knowledge and structure that DLS

approaches capture.

Various methods have been developed that aim to incorporate lexical-level distribu-

tional semantics into formal semantic frameworks (see, e.g., Coecke et al., 2010; Garrette

et al., 2014; Asher et al., 2016; Beltagy et al., 2016), which for instance allow LS mean-

ing to guide the construction of logical form for CS (Asher et al., 2016). What these

approaches have in common, however, is that there remains a clear separation between

the levels of representation that capture LS-derived properties (e.g., semantic similarity)

and those that explain CS-derived properties (e.g., logical inference). Hence, in one way

or the other, these frameworks fail to fully integrate the semantic contributions of LS

and CS meaning. This raises the question if connecting these two models of meaning

in a single formal semantic system is the right way forward. In what follows, we will

address this question from the perspective of the neurocognition of language, and derive

an architecture for incremental meaning construction that combines models of LS and

CS meaning through a compositional integration process.
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3 The neural perspective: How the brain represents mean-

ing

The neurocognition of language comprehension is concerned with how, when, and where

in the brain meaning is attributed to incoming linguistic signal as it unfolds in time.

Event-Related Potentials (ERPs)—stimulus-locked, scalp-recorded voltage fluctuations

caused by post-synaptic neural activity—have been instrumental in addressing questions

about the how and when (see Kutas et al., 2006; Kutas and Federmeier, 2011; Hoeks

and Brouwer, 2014, for reviews). ERP studies focus on systematic voltage fluctuations,

referred to as components, which are taken to reflect specific computational operations

carried out in given neuro-anatomical networks (Näätänen and Picton, 1987). Of par-

ticular salience to language comprehension are the N400 and the P600 components (see

Brouwer et al., 2012; Kuperberg, 2007; Bornkessel-Schlesewsky and Schlesewsky, 2008,

for reviews). Critically, the differential sensitivity of these components to aspects of LS

and CS delineates a comprehension architecture in which meaning representations for

LS and CS dynamically interact in the construction of compositional meaning. This dy-

namic interplay between LS and CS forms the core of Retrieval-Integration (RI) theory,

an integrated theory of the electrophysiology of language comprehension (Brouwer et al.,

2012), with an explicit cortical mapping (Brouwer and Hoeks, 2013) and neurocompu-

tational instantiation (Brouwer et al., 2017, 2021b).

3.1 The Retrieval-Integration theory of online comprehension

RI theory, as first formulated by Brouwer et al. (2012), provides an explicit account

of the processes assumed to underlie the N400 and P600 components. The N400 is a

negative deflection in the ERP signal that becomes apparent 200-300ms post-word onset

and peaks at about 400 ms (see Figure 2), and was first identified in response to se-

mantically incongruous words, such as the word “socks” in “He spread the warm bread
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3.1 Retrieval-Integration theory Two Models of Meaning

+P600-effect

−muV

+muV

0 ms 500 1000

+N400-effect

−P600-effect

−muV

+muV

0 ms 500 1000

+N400-effect

−muV

+muV

0 ms 500 1000

~N400

~P600

−muV

+muV

0 ms 500 1000

~N400

~P600

Contrast 1 Contrast 2

c)

a) b)

d)

W
av

ef
or

m
-b

as
ed

C
om

po
ne

nt
 S

tr
uc

tu
re

La
te
nt

C
om

po
ne

nt
St

ru
ct

ur
e

Figure 2: N400 and P600 components in the ERP signal. Hypothesized ERP waveform for
a contrast between a target condition (red) compared to a baseline condition (blue). By convention
negative voltage is plotted upwards on the y-axis. This contrast elicits both an N400 and a P600 effect
for the target relative to the baseline condition, which result from the differential modulations of the
N400 and P600 components in the ERP signal, respectively. Reproduced with permission (CC BY 4.0)
from Brouwer and Crocker (2017).

with socks/butter” (Kutas and Hillyard, 1980). This component is, however, not just

a response to an anomaly, but is in fact inversely proportional to the expectation of a

word in context, such that less expected words yield larger N400 amplitudes (Kutas and

Hillyard, 1984). N400 amplitude to unexpected words can, however, be attenuated if an

incoming word shares semantic (Federmeier and Kutas, 1999) or orthographic features

(Federmeier and Laszlo, 2009) with an expected word. Furthermore, the processes un-

derlying the N400 are also sensitive to the semantic association of a word to its prior

context (Aurnhammer et al., 2021), to the degree that strong association may override

any effect of expectancy; that is, the word “socks” in the example above will not produce

a larger N400 amplitude relative to “butter” when the critical sentence is embedded in a

context discussing, for instance, someone trying find a fresh pair of socks before break-

fast (Aurnhammer et al., 2023). Taken together, these findings pose clear constraints on

the computational operations underlying the N400, leading to the now well-established

perspective that the N400 is an index of the contextualized retrieval of feature-based LS
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representations from long-term semantic memory, such that the more the context primes

the LS features of an upcoming word, the more facilitated its retrieval and the more at-

tenuated N400 amplitude (Kutas and Federmeier, 2000; Lau et al., 2008; Federmeier and

Laszlo, 2009; van Berkum, 2009; Brouwer et al., 2012; Federmeier, 2022).

The P600, in turn, is a positive deflection in the ERP signal that starts to emerge

at about 600ms post-word onset (see Figure 2), and that was first identified in re-

sponse to syntactically infelicitous words, such as the word “throw” in “The spoilt child

throw/throws [. . . ].” This component is, however, not just sensitive to syntactic felicity.

P600 amplitude also increases in response to structurally-induced garden-path construc-

tions and long-distance wh-dependencies (Gouvea et al., 2010), semantic incongruities

(Van Petten and Luka, 2012; Brouwer and Crocker, 2017), as well as a wide-range of

phenomena requiring pragmatic inferencing (see Hoeks and Brouwer, 2014, for a review).

Furthermore, it has recently been shown that the P600 is not just a binary reflection

of well-formedness, but that its amplitude rather tracks the plausibility of a word in

context in a continuous manner (Aurnhammer et al., 2023). Taken together, this is

consistent with a view in which the P600 reflects the integration of incoming linguistic

input into a CS representation of the unfolding utterance thus far, such that the more

effort it takes to arrive at a coherent CS representation—in terms of construction, re-

organization, and/or updating—the larger the amplitude of the P600 (Brouwer et al.,

2012).

Indeed, these perspectives on the N400 as LS retrieval and the P600 as CS integration

suggest that the brain harnesses two separate models of meaning for LS and CS meaning.

This raises the question, however, how these meaning spaces interface in online language

comprehension; that is, how do we go from the perception of words through LS to CS? RI

theory offers an integrated theory of the electrophysiology of language comprehension

that combines the retrieval perspective on the N400 with the integration perspective

on the P600 (Brouwer et al., 2012; Brouwer and Hoeks, 2013; Brouwer et al., 2017,
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2021b; Venhuizen and Brouwer, 2025). On RI theory, the processing of an incoming

word is mechanistically conceptualized as a process function, that maps an acoustically

or orthographically perceived word form in the utterance context in which it occurs onto

a CS representation of utterance meaning:

process: (word form, utterance context) → CS representation (3)

Critically, this process function decomposes into a retrieve and integrate function, such

that the perceived word form in an utterance context is first mapped onto a LS repre-

sentation of word meaning:

retrieve: (word form, utterance context) → LS representation (4)

This contextualized retrieval of word meaning is what underlies the N400 component, and

the retrieved LS representation serves as input to an integrate function that combines it

with the utterance context established thus far, to produce an updated CS representation

of utterance meaning:

integrate: (LS representation, utterance context) → CS representation (5)

This integration of the LS representation of the meaning of an incoming word with

the utterance context underlies the P600 component. The resultant CS representation

spanning the entire utterance will determine the utterance context for upcoming words;

more specifically, it will serve as the utterance context that primes the LS representation

associated with potential upcoming input.

RI theory thus assumes a cyclic relationship between the retrieval processes under-

lying the N400 and the integration processes underlying the P600. While ERPs are not

directly informative about where these processes are carried out in the brain, aligning
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insights from electrophysiology with those on the cortical organization of language—

e.g., from functional Magnetic Resonance Imaging (fMRI) and lesion studies—results

in a minimal functional-anatomic mapping of RI theory that further corroborates its

cyclic nature (Brouwer and Hoeks, 2013). This functional-anatomic mapping is centered

around the left posterior Middle Temporal Gyrus (lpMTG) as an epicenter/hub for re-

trieval, and the left Inferior Frontal Gyrus (lIFG) as an epicenter/hub for integration

(see Figure 3a). These epicenters/hubs are connected via white matter fibers in both a

dorsal pathway (dp) and a ventral (vp) pathway (see Brouwer and Hoeks, 2013, section

3.4, for further discussion). Depending on whether the input modality is spoken or writ-

ten, a perceived word form enters the cortical RI cycle via either the auditory cortex

(ac) or visual cortex (vc), respectively. The lpMTG then retrieves its associated LS word

meaning representation, which is assumed to be stored across the association cortices,

thereby generating the N400 component. The retrieved LS representation is then pro-

jected to the lIFG where it is integrated with the current utterance context to produce

an updated CS utterance representation. This updated CS utterance representation in

the lIFG is then connected back to the lpMTG to provide an utterance context that

leads to the pre-activation/priming of (aspects of) LS representations associated with

potential upcoming words (see Brouwer and Hoeks, 2013, section 4.3, for a discussion

on the temporal dynamics of the communication between the lIFG and the lpMTG).

3.2 Neural meaning composition

The neurocomputational instantiation of RI theory directly implements the cortical in-

stantiation of RI in a recurrent neural network architecture (see Figure 3b). This ar-

chitecture consists of five layers, starting with an input (‘ac/vc’) layer at which the

model receives perceived word forms. These perceived word forms are projected through

a ‘retrieval’ (lpMTG) layer, which combines it with a top-down CS utterance context

projection, from the later ‘integration’ (lIFG) layer, to map the perceived word form
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Figure 3: Retrieval-Integration (RI) theory. (A) Functional-anatomic instantiation of RI theory:
Perceived word forms enter the RI cycle through the auditory cortex (ac) or the visual cortex (vc),
depending on the input modality (spoken versus written). The left posterior Middle Temporal Gyrus
(lpMTG) serves as retrieval epicenter/hub and core generator of the N400, while the left Inferior Frontal
Gyrus (lIFG) is serves as integration epicenter/hub and core generator of the P600. The epicenters/hubs
are connected via white matter fibers in both a dorsal pathway (dp) and ventral pathway (vp). (B)
Neurocomputational instantiation of RI theory: A recurrent neural network architecture that progres-
sively maps word forms in context onto a LS word meaning representation, and LS representations into
incremental CS utterance representations. N400 amplitude is estimated as the word-induced change in
activity the lpMTG layer, and P600 amplitude as the change in activity in the lIFG layer. Reproduced
with permission (CC BY-NC 4.0) from Brouwer et al. (2017).
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in context onto a LS word meaning representation in the ‘retrieval output’ layer. This

retrieved LS word meaning representation is then projected through a recurrent ‘inte-

gration’ (lIFG) layer, which combines it with the previous utterance context, to produce

an updated CS utterance representation in the ‘integration output’ layer. The model

processes sentences on an incremental, word-by-word basis, and at each word N400 am-

plitude is estimated as the degree of change induced in the ‘retrieval’ layer, whereas P600

amplitude is estimated as the degree of change induced in the ‘integration’ layer. Using

these explicit linking hypotheses to the N400 and P600, the model has been shown to

account for key psycholinguistic processing phenomena (Brouwer et al., 2017, 2021b).

Critically, the neurocomputational instantiation of RI theory is not only explicit

about its architecture and processing mechanisms, but also about the nature of the

neural LS and CS representations that it assumes. The neural LS representations of

word meaning are rather straightforwardly modeled as DLS representations (using the

Correlated Occurrence Analogue to Lexical Semantics, COALS; Rohde et al., 2009), such

that the dimensions of these vectors are proxies for componential semantic features.

In the most recent instantiation of the model (Brouwer et al., 2021b), the neural CS

representations are modeled using the vector representations from Distributional Formal

Semantics (DFS) (Venhuizen et al., 2022). As introduced in Section 2.2.2, DFS assumes

a meaning space MP, consisting of set of formal model structures, such that each model

M ∈ MP determines the truth value of each proposition p ∈ P. Together these models

form a continuous vector space (RMP), and comprehension in the neurocomputational

model involves navigating this vector space on a word-by-word basis to recover utterance-

final propositional meaning.

This notion of comprehension as meaning-space navigation is illustrated in Figure 4.

The cube in Figure 4a represents the meaning space presented in Venhuizen et al. (2022)

(see also Figure 1), mapped from |MP| = 150 dimensions into three dimensions (using

multi-dimensional scaling, MDS). The propositional meanings that are shown represent
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binary vectors for a subset of the propositions in P, as well as two compositional mean-

ings derived from combining these propositions: enter(mike,bar) ∧ order(mike,cola) and

enter(mike,bar) ∧ order(mike,fries). The position of these vectors relative to each other

directly reflects the world knowledge in the meaning space; propositions that are likely to

co-occur will be positioned closer to each other in the meaning space, and vice versa. The

model learns to navigate this meaning space on a word-by-word basis, producing real-

valued CS output vectors (see Figure 3b) that directly reflect world-knowledge driven

inferences. Critically, the trajectory through meaning space is directly influenced by the

linguistic experience that the model is exposed to, in terms of the frequency of utterance-

meaning pairs encountered during training, such that the model favors trajectories for

more frequently encountered word sequences (Venhuizen et al., 2019a,b).

This navigation process is illustrated in Figure 4a for the sentence prefix “Mike en-

tered the bar, he ordered . . . ”. After processing this sentence prefix, the model finds

itself in a state that is more in line with the sentence-final meaning enter(mike,bar) ∧

order(mike,cola) than with the meaning enter(mike,bar) ∧ order(mike,fries). If the sen-

tence prefix is then continued with either “cola” or “fries”, processing the word “cola”

results in a more expected transition compared to processing the word “fries”—as mea-

sured by the information-theoretic notion of surprisal (Hale, 2001; Levy, 2008), which

in DFS is defined as the negative logarithm of the probability of the current point in

meaning space given the previous point (see Venhuizen et al., 2019a). After processing

the final word, the model arrives at a point in space that approximates the intended

sentence-final meaning for each sentence.

Critically, as each point in the meaning space carries its own probability in relation

each other point in meaning space, the model updates its inferences about the commu-

nicated state-of-affairs on a word-by-word basis. This is illustrated in Figure 4b, which

plots the inference scores (see Equation 2) for a subset of propositions pertaining to

referential presuppositions, as derived from the CS representation at the output layer of
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the model at each word of the sentence “someone called the waiter, she ordered cola”.

While the sentence-initial meaning vectors show no strong inferences regarding these

presuppositions, the introduction of “waiter” leads to the strong inference (entailment)

that a waiter is present in the described state-of-affairs. Furthermore, linguistic expe-

rience leads the model to infer the presence of female referents (elli and nancy) at the

word “she”. At the sentence-final word “cola”, the set of probabilistic inferences reflects

the ‘world knowledge’-driven, non-literal interpretation that the model assigns to this

sentence, namely that elli is a referent in the described situation (driven by the high

probability of elli ordering cola in the meaning space; see Venhuizen et al., 2022 for

details).

This comprehension as meaning-space navigation has several important implications.

First of all, meaning composition in the model is an incremental process in which the LS

meaning associated with a perceived word, in context of the CS representation estab-

lished thus far, effectively triggers a transition in CS meaning-space. This transition is

effectuated by the “integration” (lIFG) layer of the model, which updates its state based

on its current activity pattern—its current state—and the LS of an incoming word. The

degree to which this state changes as a result of processing an incoming word is an

estimate of P600 amplitude in the model. Secondly, the retrieval of word meaning is ef-

fectively the activation of a word-associated LS representation in a DLS meaning-space,

and this retrieval is directly affected by the state of the “integration” (lIFG) layer; that

is, the “retrieval” (lpMTG) updates its state based on a word form perceived in the

“ac/vc” layer, as well as the top-down state of the “integration” (lIFG) layer to retrieve

the word-associated LS representation. The degree of change in this state is an estimate

of N400 amplitude in the model. LS and CS meaning thus inhabit distinct meaning

spaces, but are critically intertwined: compositional meaning construction involves in-

tegrating LS representations into CS space, and the current point in CS space directly

affects the anticipation of aspects of upcoming LS representations.

26 © 2025 Elsevier Inc. doi: 10.1016/bs.plm.2025.07.007



3.2 Neural meaning composition Two Models of Meaning

(A)

(B)

Figure 4: Comprehension as meaning-space navigation. (A) Three-dimensional mapping of the
meaning-space presented in Venhuizen et al. (2022). The gray points show a subset of the propositions
that define the meaning space, as well as two complex propositions derived from combining them. The
colored points show the word-by-word trajectories for the sentences “Mike entered the bar, he ordered
[cola/fries]”. The numbers represented the expectancy (information-theoretic surprisal) of the sentence
final words “cola” and “fries”. (B) Word-by-word inference scores for propositions pertaining to referential
presupposition at each word of the sentence “someone called the waiter, she ordered cola”. Reproduced
with permission (CC BY-NC-ND 4.0) from Venhuizen et al. (2022).
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3.3 Decoding meaning representations from neural activity

According to RI theory, the construction of compositional utterance meaning involves a

dynamic interplay between two distinct models of meaning. Conceptual meaning, on the

one hand, is captured by an LS space, with representations stored across the association

cortices, and the lpMTG serving has an epicenter/hub for their retrieval. Compositional

utterance meaning, on the other hand, is captured by a CS space, with the lIFG serv-

ing as an epicenter/hub for the construction of an unfolding CS representation, which

involves compositionally integrating LS representations into this CS space. While the

neurocomputational instantiation of RI theory is both representationally explicit about

LS and CS, as well as mechanistically explicit about their interplay in the compositional

process, these representations and mechanisms are only simplified abstractions of those

underlying comprehension in the brain. Indeed, the ultimate aim is to investigate these

representations and mechanisms in the brain more directly.

Recent advances in neuroscience and artificial intelligence have led to the develop-

ment of mapping models that do enable the direct investigation of neural meaning repre-

sentation and computation in the brain through either decoding or encoding (Poldrack,

2011; King and Dehaene, 2014). These mapping models traditionally start from a set of

words, LS representations for these words (of which the dimensions may or may not be

directly interpretable; see Frisby et al., 2023), and neural activity patterns elicited by the

perception of these words, such as individual voxel activation levels from fMRI. Decoding

models then seek to accurately predict each LS dimension from these voxel activation

levels, effectively yielding models that quantify the degree to which each individual voxel

contributes to a particular LS dimension. Encoding models, in turn, start from the LS

representations, and aim to predict each voxel activation level from the LS dimensions,

yielding models that quantify the degree to which each dimension contributes to a given

voxel. Critically, these encoding models can also be used for decoding, by finding the

most likely cause for a pattern of observed activity, which can for instance be achieved
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through informed search (see Tang et al., 2023, for such an approach).

While early mapping models using static LS representations—constructed using lan-

guage models or human ratings—have shown that it is possible to successfully decode

the meaning of words or sentences from neural activity (e.g., Mitchell et al., 2008; Pereira

et al., 2018), more recent models have pushed the state-of-the-art to the decoding of con-

tinuous language by using the contextualized representations from large language models

(Tang et al., 2023). Beyond practical implications of such models for brain-computer

interfaces, they also provide a toolkit for directly investigating the representation and

computation of meaning in the brain. However, before mapping models can be harnessed

to address such fundamental questions, important methodological and and theoretical

challenges need to be addressed. These challenges include the inconsistency of extant

mapping results (e.g., Frisby et al., 2023) and the difficulty in reconciling these results

with neurocognitive theory (e.g., compare the decoding results by Tang et al., 2023

to the cortical instantiation of RI by Brouwer and Hoeks, 2013). Furthermore, these

models predominantly focus on LS and are challenged by the theoretical difficulties of

the large-scale modeling of multi-word CS representations, as well as the difficulties im-

posed by the spatiotemporal dynamics of LS and CS representation and computation in

the compositional process (see also the discussion below). While these challenges may

not be straightforwardly overcome, mapping models do hold the promise to be instru-

mental in answering fundamental, fine-grained questions about the representation and

computation of meaning in the brain.

4 The principle of compositionality revisited

The principle of compositionality assumes a close formal relationship between word-level

LS and utterance-level CS meaning, since in its standard formulation, the CS meaning

of an expression directly derives from the LS meanings of its constituents and the (syn-
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tactic) rules by which they are combined (Partee, 1995). Despite this assumed close rela-

tionship, semantic theories of LS and CS meaning have developed into rather disparate

fields of study. Models of LS meaning focus on representations that capture concep-

tual knowledge and structure, but attempts at introducing compositionality into these

models—e.g., through vector averaging or multiplication (Mitchell and Lapata, 2010)—

have had limited success (see Pavlick, 2022, for discussion). Models of CS meaning, on

the other hand, focus on representations that capture truth-conditional entailment rela-

tions, but treat LS meaning in terms of mathematical functions, which do not capture

any conceptual structure or similarity. While there have been attempts to incorporate

(distributional) LS representations into such CS models, these often result in frameworks

in which LS and CS representations are patched together through complex mathematical

machinery, but do not fully integrate their semantic contributions (e.g., Garrette et al.,

2014; Asher et al., 2016; Beltagy et al., 2016). Taken together, this raises the question of

whether connecting models of LS and CS meaning in a single, unified semantic system

is the right way forward.

4.1 Compositionality as a non-linear mapping between meaning spaces

Experimental findings and theoretical modeling within the neurocognition of language

reveal that the human comprehension system does indeed harness both a model for

LS meaning as well as a model for CS meaning. Electrophysiological research on lan-

guage comprehension has shown that the N400 and the P600—the two most salient

language-related components of the ERP signal—are differentially sensitive to aspects

of LS and CS meaning, respectively. That is, the degree to which word-associated LS

meaning is contextually anticipated has been shown to result in a reduction of N400 am-

plitude (e.g., Kutas, 1993; Federmeier and Kutas, 1999), while expectations regarding

utterance-level CS meaning result in a reduction of P600 amplitude (e.g., Aurnhammer

et al., 2023). This differential sensitivity of the N400 and P600 forms the core of the
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Retrieval-Integration theory of language comprehension (Brouwer et al., 2012; Venhuizen

and Brouwer, 2025), an integrated theory of language electrophysiology with an explicit

functional-anatomic mapping (Brouwer and Hoeks, 2013) and neurocomputational in-

stantiation (Brouwer et al., 2017, 2021b). On RI theory, the N400 component of the

ERP signal indexes the retrieval of the LS meaning of a word, a process that is directly

modulated by top-down CS utterance context. The P600 component, in turn, indexes

the integration of this retrieved LS word meaning into an unfolding CS representation

of utterance meaning. Hence, RI theory assumes LS and CS meaning to coexist and

interact during language comprehension. Furthermore, the functional-anatomic map-

ping of RI assumes two distinct cortical epicenters/hubs, with the lpMTG serving as

an epicenter/hub for the retrieval of LS representations that are assumed to be stored

across the association cortices, and the lIFG as an epicenter/hub for CS meaning con-

struction. These epicenters are wired together through dorsal and ventral white matter

pathways, supporting the cyclic circuit required for top-down CS context to modulate

the retrieval of incoming LS word meaning, and bottom-up LS meaning to be integrated

into a representation of CS meaning.

The neurocomputational instantiation of RI theory representationally and mecha-

nistically explicates this functional-anatomic mapping, and suggests that rather than

connecting LS and CS meaning in a rule-based, formal semantic system that mathe-

matically conflates their distinct representational currencies, compositionality may be

achieved through a non-linear mapping integrating representations from an LS mean-

ing space into a meaning space for CS; that is, the neurocomputational instantiation

of RI suggests that compositionality may be an emergent epiphenomenon of the neural

machinery implementing the comprehension system. Fundamentally, this is, however,

still consistent with the assumption underlying the principle of compositionality that the

meaning of a complex expression is determined by the meanings of the individual words

that constitute the expression, and the way that they are combined.
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Indeed, this is highly reminiscent of the way in which large language models (LLMs)

construct meaning. LLMs also start from LS representations, in terms of word em-

beddings, which they progressively and non-linearly map into deeper, contextualized

embeddings. The impressive human-like comprehension behavior of such LLMs has led

to suggestions that they implement mechanisms that are highly similar to those im-

plemented by the comprehension system in the human brain (Goldstein et al., 2022;

Schrimpf et al., 2021). While such conclusions may be premature (see, e.g., Krieger

et al., 2024), LLMs do offer interesting systems for further investigation. For one, the

contextualized embeddings that these models construct may be the closest thing we have

to wide-coverage CS representations. Hence, a better understanding of these representa-

tions by grounding them in linguistic theory and relating them to neural activity through

mapping models, may further our understanding of how CS meaning is represented in the

brain. Furthermore, as LLMs also start from LS representations, they serve as examples

of systems that construct approximate CS representations trough non-linear mappings

rather than formal, rule-based mathematical machinery, offering a means to investigate

such mappings on a large scale.

4.2 Compositionality is continuous

The LS and CS models of meaning that are assumed by RI theory account for fundamen-

tally distinct types of knowledge. The LS model is assumed to capture the conceptual

structure and similarity that is associated with semantic memory. This includes con-

ceptual knowledge regarding semantic categories and features, for instance regarding

taxonomy (e.g., is animate, is mammal), function (e.g., is edible, cutting tool), and

visual form (e.g., has legs, made of steel) (McRae et al., 2005). While RI theory is

agnostic about the precise nature of these LS representations, the neurocomputational

instantiation employs DLS representations deriving from word co-occurrences to capture

conceptual similarity (based on Rohde et al., 2009; see Brouwer et al., 2017). RI theory
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does, however, critically assume the LS meaning space to be continuous in nature; that

is, since the N400 has also been shown to be sensitive in a graded manner to the degree of

semantic similarity (in terms of features and/or categories; see e.g., Boddy, 1981; Bentin

et al., 1985; Federmeier and Kutas, 1999), the LS meaning space should capture gradient

conceptual similarity. More concretely, concepts such as bar and restaurant should have

a certain degree of similarity within the LS meaning space, capturing that both have

shared semantic features like is location, sells food, but also that they are associated

with different features such as has bartender and has waiter, respectively.

RI theory asserts that retrieved LS meaning is integrated into an utterance-wide CS

representation on a word-by-word basis. More formally, utterance representations are

assumed to be dynamic in the sense that the CS meaning is captured in terms of ‘context-

change potential’ (Nouwen et al., 2022); CS representations provide both a representation

of the utterance so far, as well as a context for the retrieval of LS meaning associated with

incoming words and the integration of this meaning into an updated CS representation.

As such, RI assumes that the CS model allows for incremental composition of utterance-

level meaning — similar to the way in which a dynamic semantic framework such as

Discourse Representation Theory formalizes meaning construction.

Furthermore, the CS representations assumed by RI should not only capture literal

utterance-level entailments that are the focus of standard truth-conditional semantic

theories, but should also support probabilistic inferences that reflect ‘world knowledge’-

driven expectations; that is, since the P600 has been shown to have graded sensitivity

to ‘world knowledge’-driven plausibility manipulations (Aurnhammer et al., 2023), the

integrative composition of CS representations should capture this gradedness. Indeed,

the representations from the DFS framework (Venhuizen et al., 2022), which formalize

CS meaning in the most recent computational instantiation of RI theory (Brouwer et al.,

2021b), have been shown to capture graded ‘world knowledge’-driven inferences as part

of a high-dimensional propositional meaning space. Comprehension in the model can be
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conceptualized as navigating this meaning space on a word-by-word basis, and trajec-

tories through this space are influenced by the linguistic experience that the model is

exposed to, such that gradedness can also arise from differences in utterance frequencies.

In this model, CS meaning reflects propositional structure and similarity independent of

feature-based LS similarity; that is, in the CS meaning space, sub-propositional meaning

representations that pertain to concepts such as bar and restaurant are highly dissimilar,

since the proposition enter(mike,bar), for instance, leads to a probabilistic inference that

call(mike,bartender), while it entails the negation ¬enter(mike,restaurant).

Critically, RI assumes that LS and CS meaning reside in distinct, but interacting

meaning spaces, and that both of these meaning spaces are continuous in nature. As

a result, the non-linear mapping from LS representations into a CS meaning space is

in itself taken to be a continuous process, in that changes in contextually activated

conceptual LS knowledge during comprehension will affect utterance-level CS meaning

in a non-linear manner. Furthermore, the non-linear mapping from LS representations

into a CS space may generalize beyond the concepts and propositional state-of-affairs

that the comprehension system has experienced, thereby providing a basis for produc-

tivity and systematicity of language use, within the confines of these spaces themselves.

That is, because the meaning spaces themselves are structured and capture word- and

utterance-level inferences, models that describe compositional comprehension as a map-

ping between these spaces can map novel combinations of LS representations into the

CS meaning space (productivity), and also construct novel CS meanings (systematicity),

under the assumption that these meanings can be interpreted within the CS meaning

space (see also Frank et al., 2009; Calvillo et al., 2021).

4.3 Compositionality is expectation-based

Expectation-based theories of language comprehension hypothesize that the comprehen-

sion system continuously generates predictions about upcoming words given the unfold-
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ing context, be it implicitly or explicitly. On Surprisal Theory, these predictions are

directly related to processing effort, such that the more unexpected an incoming word

is, the higher its processing difficulty, e.g., as measured using reading times (Hale, 2001;

Levy, 2008). Indeed, the cyclic nature of RI theory renders it inherently expectation-

based: the top-down CS context affects both expectations about the conceptual LS

meaning associated with an incoming word, as well as expectations about CS meaning

resulting from integrating this LS meaning (see also Aurnhammer et al., 2021; Venhuizen

and Brouwer, 2025). The degree of contextual expectations leads to graded predictions

regarding N400 and P600 modulations, where the retrieval processes underlying the N400

are modulated by the degree to which LS features are pre-activated by the context, and

the integration processes underlying the P600 by what can effectively be conceptualized

as “comprehension-centric” surprisal—the likelihood of the current state in CS space

given the previous state (Venhuizen et al., 2019a; Brouwer et al., 2021b).

The expectation-based nature of RI theory raises the question of what drives ex-

pectations about LS and CS meaning. Starting with CS meaning, expectations are

directly conditioned on the current state in the CS meaning space. As each state in-

herently carries its own probability in the world, as well as its co-occurrence probability

with other points in the meaning space, each word-induced transition in meaning space

may be more or less expected within the CS space itself. In other words, world knowl-

edge determines which states in the meaning space are positioned close to each other,

thereby driving expectations regarding upcoming linguistic input. Critically, however,

these transitions in meaning space are also modulated by the linguistic experience that

is captured by the mapping from LS to CS representations in terms of the frequency

with which certain combinations of LS meanings are mapped onto CS meanings (Ven-

huizen et al., 2019a). This linguistic experience reflects how often states-of-affairs are

talked about in language, independent of their probability in the world. Expectations

deriving from linguistic experience may often be in agreement with those deriving from
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world knowledge, e.g., when describing a canonical situation like “John entered the cin-

ema and ordered steak/popcorn”, where the continuation “steak” is unexpected both in

terms of our knowledge of the world and in terms of how frequently this situation would

be described. Critically, however, world knowledge and linguistic experience may also

disagree; that is, there are highly likely states-of-affairs (expected according to world

knowledge) that are very uninformative and unlikely to be talked about (unexpected

according to linguistic experience), e.g., “Mary drove through a green light”. Indeed, it

is far more likely to hear someone state that “Mary drove through a red light”, as this

indicates a state-of-affairs that less probable to occur in the world (assuming Mary re-

spects traffic laws). This shows that expectations about CS meaning are thus driven by

the propositional co-occurrence structure of the CS space itself, as well as by bottom-up

linguistic experience (see Venhuizen et al., 2019a, for discussion).

Expectations about LS meaning, in turn, derive from an interplay between the top-

down propositional co-occurrence structure of the CS space, bottom-up linguistic ex-

perience, as well as world knowledge-driven conceptual structure of semantic memory.

First of all, the mapping of word form onto a LS meaning representation—i.e., retrieval

of word meaning—is modulated by top-down CS context, meaning that similar CS con-

texts will lead to the anticipation of similar LS meanings. Which LS meanings are

anticipated in a given CS context, however, is determined by linguistic experience; that

is, it is linguistic experience that shapes the relative strength of the association between

a given CS context and specific LS meanings. Finally, LS meanings that are positioned

relatively close in the conceptual meaning space will share activation patterns and may

therefore also influence lexical-level expectations. Hence, expectations about both LS

and CS meaning are modulated by the linguistic experience that the system is exposed

to, as well as both conceptual and propositional world knowledge (see also Troyer and

Kutas, 2020a,b, for direct empirical investigations of the influence of world knowledge

on word processing).
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4.4 Compositionality is spatiotemporally extended

The functional-anatomic mapping of RI theory assumes a spatial segregation between

the epicenters/hubs for retrieval and integration in terms of the lpMTG (plus association

cortices) and lIFG, respectively (Brouwer and Hoeks, 2013). This spatial segregation can

be addressed using mapping models, as discussed in Section 3.3. At a bare minimum,

this means that mapping model investigations into LS meaning, CS meaning, and the

compositional process should honor this segregation: the lpMTG and association cor-

tices are predicted to be more involved in LS retrieval, whereas the lIFG is predicted to

be more focally involved in CS integration. This state of affairs is, however, further com-

plicated by the temporal dynamics of the assumed retrieval and integration processes;

that is, the retrieval and integration processes are known to be active simultaneously,

leading the N400 and P600 to spatiotemporally overlap in the scalp-recorded ERP sig-

nal (see Delogu et al., 2019, 2021; Brouwer et al., 2021a; Delogu et al., 2025). Beyond

complications for interpreting this scalp-recorded ERP signal (see Brouwer and Crocker,

2017, for discussion), this implies that the compositional process is also spatiotemporally

extended. As a consequence, mapping models should take both the spatial and tempo-

ral dynamics of the compositional process into account. Going forward, we should thus

disentangle LS and CS representation in space, by building mapping models that target

data from neuroimaging methods with high spatial resolution such as fMRI, as well as

in time, through mapping models targeting data from neuroimaging methods with high

temporal resolution such as electroencephalography (EEG). To synthesize the results on

space and time, mapping models could be complemented by neurocomputational models

that explicate the spatiotemporal dynamics underlying compositionality in comprehen-

sion, such as a temporally-extended version of the neurocomputational instantiation of

RI theory (see Brouwer et al., 2017, section 5.4, for discussion).
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5 Conclusions

Formal modeling approaches in linguistic theory and the neurocognition of language

comprehension are both concerned with the question of how meaning is represented and

constructed from linguistic signal. The principle of compositionality, which assumes

that the meaning of a complex expression is defined as a function of the meaning of its

parts and the way they are combined, has long been a hallmark of formal semantic ap-

proaches. Extant models of semantic theory, however, focus on either capturing lexical

semantic meaning in terms of the conceptual knowledge and structure, or compositional

meaning in terms of truth-conditional entailments and inferences. Attempts at directly

integrating these models of lexical semantics with models of utterance-level composi-

tional semantics—to formalize a single semantic framework for compositional meaning

representation and construction—have proven challenging, and question the validity of

this endeavor. On the other hand, recent neurocognitive theorizing and modeling reveals

an architecture for language comprehension that assumes Retrieval-Integration cycles, in

which word-by-word processing involves the retrieval of lexical semantic word meaning

from long-term memory, and the integration of these lexical semantic meanings into a

coherent representation of compositional semantic utterance meaning.

Combining insights from linguistic theory regarding the nature of the representations

for lexical semantics and utterance-level compositional semantics with the computational

mechanisms assumed to underlie Retrieval-Integration cycles, paints a picture in which

compositional meaning construction harnesses two separate, but interacting models of

meaning—one for lexical semantics and one for compositional semantics—that dynam-

ically interact during the incremental process of word-by-word meaning construction.

Within this architecture, compositionality arises from a non-linear mapping of lexical

semantic representations into a space for utterance-level compositional meaning. This

results in a notion of compositional integration, which emphasizes the continuous nature
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of the compositional process and its underlying representations, the expectation-based

dynamics of word-by-word meaning composition, as well as the observation that incre-

mental meaning construction is a spatiotemporally-extended process in the brain. This

novel perspective on compositionality—centered around two models of meaning—thus

combines insights from linguistic and neurocognitive theory, and serves as a starting

point for more integrative, interdisciplinary approaches towards modeling the represen-

tation and computation of the meaning of words, sentences, and larger discourses.
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