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Abstract 

A core tenet in linguistic theory is the principle of compositionality, which holds that 
the meaning of a multi-word utterance directly derives from the meanings of the 
individual words, and the rules by which they are combined. Semantic theories of 
lexical word meaning and compositional utterance meaning have, however, devel-
oped into surprisingly distinct fields of study. Lexical semantic theories of word 
meaning focus on modeling conceptual structure and similarity, e.g., the words “tea” 
and “coffee” are similar in that they both describe drinkable substances. Formal 
semantic theories focusing on compositional utterance meaning, in turn, focus on 
modeling sentence- and discourse-level entailments and inferences, e.g., “drinking hot 
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coffee” entails “drinking coffee”. Critically, attempts at unifying models of lexical and 
compositional semantics have proven challenging and often yield complex frame-
works, in which word- and utterance-level meanings are patched together to form a 
whole, without fully integrating their semantic contributions. We here revisit the 
principle of compositionality from the neurocognition of language, which reveals that 
the human comprehension system harnesses distinct models for lexical and com-
positional meaning, and that these models are critically intertwined in a cyclic 
architecture for language comprehension. Within this architecture, compositionality 
arises from a non-linear mapping of lexical semantic representations into a space for 
compositional semantic meaning, resulting in a continuous, expectation-based, and 
spatiotemporally-extended notion of compositional integration. This novel perspective 
on compositionality, combining linguistic and neurocognitive theory, paves way for a 
more integrative approach towards modeling the meaning of words and utterances.

1. Introduction

One of the core topics in linguistic theory has traditionally been the 
question of how the meaning of complex multi-word utterances is derived 
from the meaning of the individual words that constitute these utterances. 
In the traditional view, there is a clear separation between the syntactic 
principles that determine how words can be combined to form complex 
utterances, and the semantic principles that define how meanings are 
represented and constructed. This distinction is colorfully illustrated in the 
famous example “Colorless green ideas sleep furiously”, which was 
introduced as an example of a sentence that is grammatically correct, yet 
nonsensical (Chomsky, 1957, p. 15). This distinction between syntax and 
semantics has long been a guiding principle in answering the overarching 
question of how meaning is assigned to linguistic input. Specifically, it has 
led to the fundamental principle that the meaning of a complex expression 
is fully determined by the meanings of the individual words that constitute 
the expression, and the way that they are combined (Partee, 1995). This 
principle of compositionality lies at the core of current approaches in semantic 
theory, which presuppose a close relationship between the lexical meanings 
of individual words and the compositional meanings assigned to sentences 
and utterances; that is, utterance-level meaning is directly derived from the 
meanings of the individual words and the syntactic rules by which they are 
combined.

The close formal relationship between lexical and compositional 
meaning that is assumed by the principle of compositionality has some 
desirable properties, as it explains the observation that human language 

2                                                                       Noortje J. Venhuizen and Harm Brouwer 



users are able to produce and understand an infinitely large number of 
complex expressions that they have not encountered before (referred to as 
productivity of language use), and that they can systematically combine and 
reorder the constituents of complex expressions into novel utterances 
(systematicity of language use). While the principle of compositionality takes 
center stage in explaining these premises of language use, semantic theories 
that study lexical meaning at the level of words and those that focus on 
compositional meaning at the level of sentences and discourses have 
developed into surprisingly distinct fields of study.

Lexical semantic (LS) theories aim to model the meaning of individual 
words. In particular, distributional approaches to LS meaning model word 
meaning as vector representations derived from semantic features, cap-
turing the similarities and dissimilarities between concepts in high- 
dimensional vector spaces: e.g., the concepts “tea” and “coffee” could be 
modeled with vectors that encode their similarity in that they are both 
drinkable substances, but also their dissimilarity in that one is made from 
leaves and the other from beans. To formalize the principle of composi-
tionality, there have been numerous attempts to combine these LS 
representations into compositional semantic (CS) representations spanning 
multi-word utterances, for i nstance through vector averaging or multi-
plication (e.g., Mitchell & Lapata, 2010). However, these approaches fall 
short in approximating human-like compositionality (Pavlick, 2022). 
Formal semantic frameworks, by contrast, fare a lot better in modeling the 
CS meaning of multi-word utterances. These formal semantic frameworks 
are typically grounded in mathematical logic, where LS meanings are 
modeled as functions—thereby sacrificing their conceptual richness and 
structure—and composition is modeled as function application (e.g., the 
meaning of “hot coffee” results from applying the function “hot” to the 
argument “coffee”). While these frameworks neatly capture CS meaning in 
terms of truth-conditional entailment and inference, they do not naturally 
capture the similarities and dissimilarities between lexical items, thus 
motivating approaches that aim to introduce distributional LS meanings 
into such frameworks (Asher et al., 2016; Beltagy et al., 2016; Garrette 
et al., 2014). While these hybrid approaches may conceptually come closest 
to implementing the principle of compositionality, they do often yield 
rather ‘Frankensteinian’ frameworks in which distributional and formal 
semantics are patched together to form a whole, while still living in distinct 
representational spaces, thereby not fully integrating their semantic con-
tributions.
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These attempts at implementing the principle of compositionality by 
combining LS and CS meaning into a single semantic framework raise an 
important question, namely whether integrating these fundamentally dif-
ferent models of meaning is the right way forward. One way to address this 
question is to turn to how the human brain represents and constructs 
meaning. Advances in the neurocognition of language comprehension 
paint a picture supporting a perspective in which LS and CS meaning do 
indeed co-exist and interact, and recent neurocomputational modeling 
work suggests compositionality is achieved by mapping representations 
from an LS meaning space into a separate space for CS meaning. 
Neurocognitive theory, informed by empirical and modeling results, thus 
suggests that LS and CS meaning do indeed inhabit distinct meaning spaces, 
but that they are also critically intertwined in the compositional compre-
hension process: incremental meaning construction involves retrieval of LS 
meaning, informed by the unfolding CS utterance context, which is 
accordingly integrated into an updated representation of the CS utterance 
meaning (Brouwer et al., 2012, 2017, 2021a). We therefore argue that the 
traditional notion of compositionality, which is grounded in syntactic 
combinatory rules, needs to be revised into a more dynamic notion of 
compositional integration, and we discuss the theoretical and empirical 
implications of this proposal.

2. The linguistic perspective: How meaning can be 
modeled

In the study of linguistic meaning, a variety of formal frameworks 
has been proposed to model meaning at the level of words, sentences, and 
larger discourses. While these approaches generally agree upon the 
principle that these levels of meaning are closely related to each other, the 
core phenomena studied within these frameworks vary widely, ranging 
from word-level similarity and conceptual structure to sentence-level 
entailments, discourse structure and ‘world knowledge’-driven inference. 
Attempts at implementing the principle of compositionality by inte-
grating these approaches into a single semantic framework have proven 
challenging. This results in a state of affairs that suggests that LS and CS 
should instead be treated as complementary, but interacting, models of 
meaning.
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2.1 Lexical semantics: Conceptual knowledge and structure
Semantic formalisms that aim to capture word-level (LS) meaning from a 
cognitive perspective are typically strongly grounded in the study of human 
semantic memory: the collection of knowledge that allows humans to not 
only use and understand language, but also to navigate the world around us, 
e.g., by recognizing and classifying objects. A core notion that these 
approaches aim to capture is the observation that the conceptual knowledge 
associated with individual words is both gradient and structured: concepts are 
related to each other to different degrees, which is quantified as semantic 
similarity (e.g., “bird” is more similar to “dog” than to “spoon”), and these 
relations are hierarchical in nature, in the sense that particular concepts are 
more general than others (e.g., “bird” subsumes both “robin” and “ostrich”). 
Theories of lexical meaning aim to capture this conceptual knowledge and 
structure by assuming semantic features as the representational currency for 
conceptual knowledge (McRae et al., 2005).

Semantic features constitute the dimensions of the LS representations 
and may take different forms (see Frisby et al., 2023). A first set of 
approaches intuitively conceptualizes these semantic features as identifying 
discrete categories or local features; for instance, the dimensions of the 
semantic representation of “bird” may indicate the presence/absence of 
features such as has wings, can fly, or has eyes. Each semantic representation, 
then, represents a vector in a high-dimensional semantic space, which can 
be directly compared to other representations using various vector-based 
metrics to quantify semantic similarity. The advantage of these approaches 
is that semantic similarity is not only quantifiable, but that the dimensions 
are also directly interpretable as independent categories or features.

An alternative approach to capturing semantic features for LS is grounded 
in a theoretical foundation that has become known as the Distributional 
Hypothesis—in the formulation of J. R. Firth: “You shall know a word by 
the company it keeps!” (Firth, 1957, p.11). Based on the idea that “the 
meaning of words lies in their use” (Wittgenstein, 1953, pp. 80, 109), the 
Distributional Hypothesis assumes that words that occur in similar contexts 
will have similar meanings (see also Clark, 2012; Erk, 2012; Lenci, 2018; 
Turney & Pantel, 2010). This hypothesis has informed various influential 
implementations in which the dimensions of the resulting LS representations 
capture lexical co-occurrence information across linguistic contexts, i.e., 
sentences or documents (e.g., Latent Semantic Analysis, LSA; Landauer & 
Dumais, 1997, Hyperspace Analogue of language, HAL; Burgess, 1998, and 
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Dependency Vectors, DV; Padó & Lapata, 2007). In more recent instan-
tiations of the Distributional Hypothesis, LS vectors are word embeddings 
with abstract dimensions that are not directly interpretable, derived for 
instance from neural prediction models (e.g., word2vec, Mikolov et al., 
2013a, 2013b, GloVe, Pennington et al., 2014, ELMo, Peters et al., 2018, 
BERT, Devlin et al., 2019, GPT, Radford et al., 2019).

The resulting distributional lexical semantic (DLS) representations have 
been extremely successful in capturing conceptual knowledge and structure 
in terms of semantic similarity. This has inspired investigations into how they 
can be combined compositionally into utterance-level CS representations, 
for instance, by using vector operations as a proxy for semantic composition 
(Mitchell & Lapata, 2010), or by combining DLS representations into more 
complex structures to arrive at CS meaning (Baroni & Zamparelli, 2010; 
Coecke & Clark, 2011; Grefenstette & Sadrzadeh, 2015; Socher et al., 2012). 
While these approaches have shown some promise, for instance in modeling 
adjective-noun modification (Baroni et al., 2014; Vecchi et al., 2017), it has 
proven challenging to capture higher level semantic composition, supporting 
the conclusion that feature-based LS representations are “good at lexical 
semantics, bad at composition” (Pavlick, 2022, p. 464).

2.2 Compositional semantics: The meaning of multi-word 
utterances

Formal semantic frameworks for CS meaning focus on modeling the 
construction and interpretation of phrases, sentences and multi-sentence 
discourses. Starting from the idea that sentences (or: propositional-level 
meanings) can be either true or false with respect to a state of affairs in the 
world, approaches in formal semantics focus on describing sentence 
meanings with respect to formal model structures that describe such 
situations. In its simplest form, a model structure is defined as a set of 
entities, called the universe U, and an interpretation function I that assigns 
entities from the universe (or sets thereof) to the meaning of linguistic 
expressions (e.g., the interpretation I(bird) describes the subset of entities 
in the universe U that are birds). Sentences can thus be assigned truth values 
within these model structures via a translation to some logical repre-
sentation of their meaning, which in turn obtains a formal model inter-
pretation via the interpretation function (e.g., “Tweety is a bird” is true if 
and only if “Tweety” refers to an entity in the universe that is also in the set 
of birds). Sentence meaning, then, is defined in terms of the truth conditions 
with respect to formal model structures: the constraints under which the 
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logical representation of the sentence is assigned the truth value “true” in 
the model—in other words, the conditions under which the model satisfies 
the meaning of the sentence. Two sentences are assumed to express the 
same meaning if they have the same truth conditions, i.e., they are satisfied 
by the same models. This critically allows for a formalization of the logical 
entailment relation between individual sentences: Sentence A is logically 
entailed by sentence B if any model that satisfies the meaning of sentence B 
also satisfies the meaning of sentence A (e.g., the sentence “Mike paid” is 
logically entailed by the sentence “Mike ordered and paid”).

Approaches in semantic theory differ in terms of the logical framework 
that is used to represent meaning as well as in terms of the complexity of the 
underlying model structures, which may capture, for instance, event struc-
ture (Davidson, 1969) or a notion of time (Kamp, 1980). Furthermore, 
traditional approaches have formalized compositional semantic construction 
in a static manner, assuming independent representations for lexical con-
stituents (e.g., as lambda functions) which are then combined into compo-
sitional representations through function application (Montague, 1970). 
More recent semantic theorizing, however, has embraced a dynamic view 
toward meaning construction, emphasizing the incremental nature of lin-
guistic processing in terms of the growth of semantic information over time 
(Nouwen et al., 2022).

2.2.1 Dynamic semantics: Discourse structure and composition
A dynamic semantic framework that is particularly amenable to different 
variations of model-theoretic complexity is Discourse Representation 
Theory (DRT; Kamp, 1981; Kamp & Reyle, 1993; Kamp et al., 2011). 
DRT is a mentalist framework for formal semantics that provides abstract 
representations corresponding to the types of mental representations assumed 
to underlie human language comprehension, often referred to as mental models 
(Johnson-Laird, 1983) or situation models (Zwaan & Radvansky, 1998). The 
basic meaning units in DRT are called Discourse Representation Structures 
(DRSs), which are formally defined as a tuple 〈U, C〉 consisting of a set of 
entities U and a set of conditions on these entities C. The conditions in a 
DRS may describe simple first-order properties or relations, but may 
themselves also include logical combinations of DRSs. DRSs are often 
visualized using box-representations such as in example (1) below, where the 
universe of the DRS ({x,y}) is represented in the top of the box and the 
conditions are described as first-order predicates over these variables:
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(1) Mike called the waiter.   

Each DRS can be formally assigned truth conditions relative to a 
model structure, via either a translation to first-order logic or via an 
embedding function (Kamp, 1981). A critical aspect of DRT is that it 
formalizes meaning at the discourse rather than the sentence level; each 
DRS not only defines the truth conditions for a given sentence, but also 
provides a context for any upcoming semantic content, e.g., in terms of 
the referents that are available for pronominal reference. For example, a 
discourse in which the sentence above is continued with a novel sen-
tence containing a referential expression is formalized as an updated 
DRS in which the initial meaning representation is extended with the 
novel semantic information. This is effectuated as a ‘merge’ operation 
(+) between DRSs:

(2) Mike called the waiter. He did not order any food.

The DRS resulting from this merge operation combines the universes 
of both DRSs, {x,y} for the first DRS and the empty set for the second 
DRS, as well as their conditions.

DRT thus captures discourse-level meaning in terms of formal truth- 
conditional representations, while at the same time offering a dynamic 
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semantic framework for meaning construction, in which novel semantic 
information is continuously merged with the discourse context established 
so far. To arrive at these representations in a compositional manner, 
Muskens (1996) defines a version of DRT that employs lambda calculus to 
formalize how word-level meanings (formalized as functions in the form of 
lambda expressions) combine into sentence- and discourse-level DRS 
representations. Such compositional formulations, however, still assume a 
relatively static representation of lexical meaning, where a word like 
“waiter” is interpreted relative to a formal model structure as the set of 
entities that satisfy this predicate. This means that lexical-level similarities, 
as for instance modeled in distributional approaches to lexical semantics, are 
not naturally captured within these representations. Another important 
limitation of formal semantic approaches such as DRT is that these logical 
frameworks do not naturally allow for capturing defeasible inferences that 
go beyond the literal meaning of the individual expressions—although 
various extensions of DRT have been proposed that do capture pre-
suppositions and implicatures (e.g., Layered DRT; Geurts & Maier, 2013, 
Projective DRT; Venhuizen et al., 2018), as well as rhetorical structure 
(Segmented DRT; Asher & Lascarides, 2003). In particular, the inter-
pretation of DRS representations in terms of model-derived truth condi-
tions does not allow for capturing defeasible probabilistic inferences that 
reflect world knowledge-driven expectations; for instance, the inference 
that it is likely that “Mike” is in a “restaurant” in example (2) above. In 
order to capture such world knowledge-driven inferences, recent work has 
sought to combine insights from model-theoretic semantics with those 
deriving from distributional approaches to develop a framework for 
expectation-based semantics, which offers distributional representations of 
CS meaning at the level of propositions (Venhuizen et al., 2019a, 2022).

2.2.2 Expectation-based semantics: World knowledge-driven 
inferencing

Distributional Formal Semantics (DFS; Venhuizen et al., 2019a, 2022) is a 
distributional framework for meaning representation that builds on neu-
rocognitive models of story comprehension (Frank et al., 2009; Golden & 
Rumelhart, 1993) to capture propositional meanings in terms of co- 
occurrences in the world. Conceptually, DFS defines a meaning space in 
terms of different states-of-affairs in the world, in which propositions such 
as enter(mike,bar), describing “Mike entering a bar”, may or may not co- 
occur; e.g., enter(mike,bar) may co-occur with order(mike,cola), but not with 
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enter(mike,restaurant). The DFS meaning representations that derive from 
this space are vectors that are compositional at the propositional level, in 
that meanings can be combined using logical operators, as well as prob-
abilistic in the sense that they inherently capture the likelihood that 
meanings (co-)occur within the meaning space.

More formally, DFS defines meaning relative to a (finite) set of formal 
model structures , which together constitute the meaning space based on a 
finite set of propositions . Each model constitutes an observation of a state of 
affairs in the world, in that each M is a first-order model that describes 
which of the propositions in are true in that model. The set of models 
can thus be interpreted as a set of possible worlds, in which different con-
stellations of propositions may co-occur (in the tradition of Carnap, 1988). 
The meaning of an individual proposition, then, is defined relative to this set of 
models (or possible worlds); that is, the meaning of a (simple or complex) 
proposition p is defined by a vector p v p[[ ]] ( )= that assigns 1 to each 
M that satisfies p, and 0 otherwise (Venhuizen et al., 2022).

Critically, as propositional meaning is directly defined in terms of 
satisfaction with respect to formal model structures, DFS representations 
are fully compositional at the propositional level. This means that the 
meaning of any logical combination of propositions can be derived from 
the meaning space as operations over the underlying meaning vectors. 
Specifically, we can define the meaning of the negation of a given pro-
position p as a vector operation: p v p[[ ]] 1 ( )¬ = , which results in a 
vector that is the complement of v p( ) and that assigns 0 to each M
that satisfies p, and 1 otherwise. The conjunction of two propositions p and 
q, in turn, is defined as component-wise vector multiplication: 
p q v p v q[[ ]] ( ) ( )= such that the resulting vector v p q( ) assigns 1 to 
each M that satisfies both p and q, and 0 otherwise. Together, these 
negation and conjunction operators allow for the derivation of any arbi-
trarily complex combination of propositions, as well as for definitions of 
existential quantification (e.g., “someone orders cola”) and universal 
quantification (“everyone pays”); see Venhuizen et al. (2022) for details.

The set of models constitutes a meaning space that encodes the 
meaning of (complex) propositions in terms of their co-occurrence with 
other propositions: propositions that co-occur across a large set of models 
(observations of states-of-affairs in the world) will result in similar 
meaning vectors. Critically, while propositional meaning is defined in 
terms of binary vectors relative to the meaning space , this space 
actually constitutes a continuous vector space . As a result, the 
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meaning space defines meanings not only for binary propositional vectors, 
but also for real-valued vectors that do not directly correspond to 
(combinations of) propositions; rather, these vectors can be described as 
representing meanings that may lie in between the meanings of propo-
sitional expressions. As will become apparent below, these real-valued 
vectors represent sub-propositional meanings (e.g., “bartender brings”, 
which still requires an object) that can be used to express the incremental 
construction of propositional-level meaning (e.g., by adding “fries” to 
form bring(bartender,fries), which is a full proposition).

All meaning vectors that can be defined in the DFS meaning space 
inherently encode probabilistic knowledge about (co-)occurrence in the 
world that is defined by the meaning space; propositions that are true in 
many models can be considered to have a high probability in the world. 
Hence, the probability P(a) of a (propositional or sub-propositional) 
expression a in this space is defined as follows: 

P a v a( )
1

( )
i

i= (1) 

That is, the probability of a is defined as the fraction of models 
(observations) in which a is satisfied. This definition can be straightfor-
wardly extended to a definition of the conditional probability of a given 
b: P(a∣b) = P(a ∧ b )∕ P(b). This means that the representations in DFS allow 
for calculating the conditional probability of any expression in relation to 
all other (propositional or sub-propositional) meanings that can be defined 
within the meaning space. As a result, we can use this probabilistic nature 
of the meaning representations to quantify the extent to which expressions 
are inferred from each other. Specifically, if the conditional probability P 
(a∣b) equals 1 for some propositional meanings a and b, this means that a is 
satisfied in all the models that satisfy b; in other words, a is entailed by 
b (b ⊨ a). Furthermore, by comparing the conditional probability P(a∣b) to 
the prior probability P(a), the degree to which knowing b increases or 
decreases the certainty in a can be quantified, which gives us a notion of 
probabilistic inference (Frank et al., 2009; Venhuizen et al., 2022): 

inference a b
P a b P a

( , )
if ( ) ( )

otherwise

P a b P a

P a

P a b P a
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1 ( )

( ) ( )
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This inference score results in a value between −1 and 1, such that 
negative values indicate that a is negatively inferred from b (or: knowing b 
decreases the probability that a is the case) and positive values indicate that a 
is positively inferred from b (or: knowing b increases the probability that a 
is the case). Hence, an inference score of 0 indicates that a is probabil-
istically independent of b, an inference score of 1 indicates positive 
entailment (b ⊨ a) and an inference score of −1 indicates negative entail-
ment (b ⊨ ¬a).

Let us turn to an example to illustrate how this mathematical 
machinery can be used to quantify the inferences and expectations in a 
concrete meaning space. Fig. 1 plots the inference score for a subset of the 
propositions that are defined in the meaning space presented in 

Fig. 1 Meaning space with probabilistic inferences. Cells plot the inference 
score of each proposition a given each proposition b for a subset of propositions 
in the meaning space presented in Venhuizen et al. (2022). Bright green cells 
indicate positive entailment between propositions (b ⊨ a), bright red cells indicate 
negative entailment (b ⊨ ¬a), and all other intermediate cells indicate probabilistic 
inferences on this positive-to-negative continuum. Reproduced with permission 
(CC BY-NC-ND 4.0) from Venhuizen et al. (2022). 
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Venhuizen et al. (2022). Propositions take the form of predicated 
expressions, such that order(mike,cola) corresponds to the meaning of 
“Mike orders cola”. This heatmap shows the value of inference(a,b), ran-
ging from −1 (red) to + 1 (green), for each propositional expression a 
given itself and each other propositional expression b. The green diagonal 
shows that each proposition is positively entailed by itself. Furthermore, 
certain propositions are negatively entailed by each other (e.g., enter 
(mike,bar) given enter(mike,restaurant), and vice versa), which reflects the 
fact that in the meaning space these propositions never co-occur. All 
graded values reflect probabilistic inferences; for instance, enter(mike,bar) is 
inferred negatively from order(mike,salad). Hence, these inferences reflect 
how the meaning vectors that derive from the DFS meaning space cap-
ture rich world knowledge based on propositional co-occurrences—in 
other words, to paraphrase the famous formulation of the Distributional 
Hypothesis by Firth (1957): you shall know a proposition by the company 
it keeps in the world.

An important observation to make here is that the inferences made 
within such a propositional meaning space do not directly align with word- 
level LS inferences informed by semantic similarity. For instance, while 
“bar” and “restaurant” may be elicit similar associations on the lexical level 
(e.g., about ordering food and drinks), the propositions in which these 
expressions occur are not semantically similar within the DFS meaning space, 
due to the (relatively) low co-occurrence of these propositions across the 
observations of states-of-affairs in the world. This means that the inferences 
that can be drawn from the DFS meaning space are distinct from those that 
can be drawn from lexical co-occurrences or componential analysis.

2.3 Two models of meaning?
The linguistic perspective delineates two models of meaning. On the one 
hand, DLS uses feature-based representations to model conceptual 
knowledge and structure. While these approaches do indeed successfully 
capture human intuitions about conceptual similarity, it has proven chal-
lenging to define compositionality over such LS representations (Pavlick, 
2022). In fact, one can even raise the question if it is possible to express all 
of the complexities of compositional meaning within a meaning space for 
LS, of which the dimensions are assumed to represent some form of 
componential semantic features of individual concepts. Dynamic semantic 
frameworks, like DRT, on the other hand, harness formal model theory to 
construct CS representations that successfully capture truth-conditional 
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entailment relations. More recent expectation-based semantic frameworks, 
like DFS, extend this truth-conditional approach to capturing ‘world 
knowledge’-driven inferences in terms of probabilistic entailment relations. 
Neither of these formal semantic approaches to CS, however, captures the 
conceptual knowledge and structure that DLS approaches capture.

Various methods have been developed that aim to incorporate lexical- 
level distributional semantics into formal semantic frameworks (see, e.g., 
Asher et al., 2016; Beltagy et al., 2016; Coecke et al., 2010; Garrette et al., 
2014), which for instance allow LS meaning to guide the construction of 
logical form for CS (Asher et al., 2016). What these approaches have in 
common, however, is that there remains a clear separation between the 
levels of representation that capture LS-derived properties (e.g., semantic 
similarity) and those that explain CS-derived properties (e.g., logical 
inference). Hence, in one way or the other, these frameworks fail to fully 
integrate the semantic contributions of LS and CS meaning. This raises the 
question if connecting these two models of meaning in a single formal 
semantic system is the right way forward. In what follows, we will address 
this question from the perspective of the neurocognition of language, and 
derive an architecture for incremental meaning construction that combines 
models of LS and CS meaning through a compositional integration process.

3. The neural perspective: How the brain represents 
meaning

The neurocognition of language comprehension is concerned with 
how, when, and where in the brain meaning is attributed to incoming 
linguistic signal as it unfolds in time. Event-Related Potentials 
(ERPs)—stimulus-locked, scalp-recorded voltage fluctuations caused by 
post-synaptic neural activity—have been instrumental in addressing ques-
tions about the how and when (see Hoeks & Brouwer, 2014; Kutas & 
Federmeier, 2011; Kutas et al., 2006, for reviews). ERP studies focus on 
systematic voltage fluctuations, referred to as components, which are taken to 
reflect specific computational operations carried out in given neuro-ana-
tomical networks (Näätänen & Picton, 1987). Of particular salience to 
language comprehension are the N400 and the P600 components (see 
Bornkessel-Schlesewsky & Schlesewsky, 2008; Brouwer et al., 2012; 
Kuperberg, 2007, for reviews). Critically, the differential sensitivity of these 
components to aspects of LS and CS meaning delineates a comprehension 
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architecture in which representations for LS and CS meaning dynamically 
interact in the construction of compositional utterance meaning. This 
dynamic interplay between LS and CS meaning forms the core of 
Retrieval-Integration (RI) theory, an integrated theory of the electro-
physiology of language comprehension (Brouwer et al., 2012), with an 
explicit cortical mapping (Brouwer & Hoeks, 2013) and neurocomputa-
tional instantiation (Brouwer et al., 2017, 2021b).

3.1 The retrieval-integration theory of online comprehension
RI theory, as first formulated by Brouwer et al. (2012), provides an explicit 
account of the processes assumed to underlie the N400 and P600 com-
ponents. The N400 is a negative deflection in the ERP signal that becomes 
apparent 200–300ms post-word onset and peaks at about 400 ms (see 
Fig. 2), and was first identified in response to semantically incongruous 
words, such as the word “socks” in “He spread the warm bread with 
socks /butter ” (Kutas & Hillyard, 1980). This component is, however, not 
just a response to an anomaly, but is in fact inversely proportional to the 
expectation of a word in context, such that less expected words yield larger 
N400 amplitudes (Kutas & Hillyard, 1984). N400 amplitude to unexpected 
words can, however, be attenuated if an incoming word shares semantic 
(Federmeier & Kutas, 1999) or orthographic features (Federmeier & Laszlo, 
2009) with an expected word. Furthermore, the processes underlying the 
N400 are also sensitive to the semantic association of a word to its prior 
context (Aurnhammer et al., 2021), to the degree that strong association 
may override any effect of expectancy; that is, the word “socks” in the 
example above will not produce a larger N400 amplitude relative to 
“butter” when the critical sentence is embedded in a context discussing, for 
instance, someone trying to find a fresh pair of socks before breakfast 
(Aurnhammer et al., 2023). Taken together, these findings pose clear 
constraints on the computational operations underlying the N400, leading 
to the now well-established perspective that the N400 is an index of the 
contextualized retrieval of feature-based LS representations from long-term 
semantic memory, such that the more the context primes the LS features of 
an upcoming word, the more facilitated its retrieval and the more atte-
nuated N400 amplitude (Brouwer et al., 2012; Federmeier, 2022; 
Federmeier & Laszlo, 2009; Kutas & Federmeier, 2000; Lau et al., 2008; 
van Berkum, 2009).

The P600, in turn, is a positive deflection in the ERP signal that starts 
to emerge at about 600 ms post-word onset (see Fig. 2), and that was first 
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identified in response to syntactically infelicitous words, such as the word 
“throw” in “The spoilt child throw/throws […].” This component is, 
however, not just sensitive to syntactic felicity. P600 amplitude also 
increases in response to structurally-induced garden-path constructions and 
long-distance wh-dependencies (Gouvea et al., 2010), semantic incon-
gruities (Brouwer & Crocker, 2017; Van Petten & Luka, 2012), as well as a 
wide range of phenomena requiring pragmatic inferencing (see Hoeks & 
Brouwer, 2014, for a review). Furthermore, it has recently been shown 
that the P600 is not just a binary reflection of well-formedness, but that its 
amplitude rather tracks the plausibility of a word in context in a continuous 
manner (Aurnhammer et al., 2023). Taken together, this is consistent with 
a view in which the P600 reflects the integration of incoming linguistic 
input into a CS representation of the unfolding utterance thus far, such that 
the more effort it takes to arrive at a coherent CS representation—in terms 
of construction, reorganization, and/or updating—the larger the amplitude 
of the P600 (Brouwer et al., 2012).

Indeed, these perspectives on the N400 as LS retrieval and the P600 as 
CS integration suggest that the brain harnesses two separate models of 
meaning for LS and CS meaning. This raises the question, however, how 
these meaning spaces interface in online language comprehension; that is, 
how do we go from the perception of words through LS to CS? RI theory 
offers an integrated theory of the electrophysiology of language compre-
hension that combines the retrieval perspective on the N400 with the 

Fig. 2 N400 and P600 effects in the ERP signal. Hypothesized ERP waveform for a 
contrast between a target condition (red) compared to a baseline condition (blue). By 
convention negative voltage is plotted upwards on the y-axis. This contrast elicits 
both an N400 and a P600 effect for the target relative to the baseline condition, which 
result from the differential modulations of the N400 and P600 components in the ERP 
signal, respectively. Reproduced with permission (CC BY 4.0) from Brouwer and Crocker 
(2017). 
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integration perspective on the P600 (Brouwer & Hoeks, 2013; Brouwer 
et al., 2012, 2017, 2021b; Venhuizen & Brouwer, 2025). On RI theory, 
the processing of an incoming word is mechanistically conceptualized as a 
process function, that maps an acoustically or orthographically perceived 
word form in the utterance context in which it occurs onto a CS representation 
of utterance meaning: 

process word form utterance context CS representation: ( , ) (3) 

Critically, this process function decomposes into a retrieve and integrate 
function, such that the perceived word form in an utterance context is first 
mapped onto a LS representation of word meaning: 

retrieve word form utterance context LS representation: ( , ) (4) 

This contextualized retrieval of word meaning is what underlies the 
N400 component, and the retrieved LS representation serves as input to an 
integrate function that combines it with the utterance context established thus 
far, to produce an updated CS representation of utterance meaning: 

integrate LS representation utterance context CS representation: ( , ) (5) 

This integration of the LS representation of the meaning of an incoming 
word with the utterance context underlies the P600 component. The 
resultant CS representation spanning the entire utterance will determine 
the utterance context for upcoming words; more specifically, it will serve as 
the utterance context that primes the LS representation associated with 
potential upcoming input.

RI theory thus assumes a cyclic relationship between the retrieval 
processes underlying the N400 and the integration processes underlying the 
P600. While ERPs are not directly informative about where these pro-
cesses are carried out in the brain, aligning insights from electrophysiology 
with those on the cortical organization of language—e.g., from functional 
Magnetic Resonance Imaging (fMRI) and lesion studies—results in a 
minimal functional-anatomic mapping of RI theory that further corro-
borates its cyclic nature (Brouwer & Hoeks, 2013). This functional-ana-
tomic mapping is centered around the left posterior Middle Temporal 
Gyrus (lpMTG) as an epicenter/hub for retrieval, and the left Inferior 
Frontal Gyrus (lIFG) as an epicenter/hub for integration (see Fig. 3A). 
These epicenters/hubs are connected via white matter fibers in both a 
dorsal pathway (dp) and a ventral (vp) pathway (see Brouwer & Hoeks, 
2013, Section 3.4, for further discussion). Depending on whether the input 
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Fig. 3 Retrieval-Integration (RI) theory. (A) Functional-anatomic instantiation of RI 
theory: perceived word forms enter the RI cycle through the auditory cortex (ac) or the 
visual cortex (vc), depending on the input modality (spoken versus written). The left 
posterior Middle Temporal Gyrus (lpMTG) serves as retrieval epicenter/hub and core 
generator of the N400, while the left Inferior Frontal Gyrus (lIFG) is serves as inte-
gration epicenter/hub and core generator of the P600. The epicenters/hubs are 
connected via white matter fibers in both a dorsal pathway (dp) and ventral pathway 
(vp). (B) Neurocomputational instantiation of RI theory: a recurrent neural network 
architecture that progressively maps word forms in context onto a LS word meaning 
representation, and LS representations into incremental CS utterance representations. 
N400 amplitude is estimated as the word-induced change in activity the lpMTG layer, 
and P600 amplitude as the change in activity in the lIFG layer. Numbers in par-
entheses indicate layer sizes and solid arrows indicate full projections between layers. 
Reproduced with permission (CC BY-NC 4.0) from Brouwer et al. (2017). 
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modality is spoken or written, a perceived word form enters the cortical RI 
cycle via either the auditory cortex (ac) or visual cortex (vc), respectively. 
The lpMTG then retrieves its associated LS word meaning representation, 
which is assumed to be stored across the association cortices, thereby 
generating the N400 component. This retrieved LS representation is 
projected to the lIFG where it is integrated with the current utterance 
context to produce an updated CS utterance representation. This updated 
CS utterance representation in the lIFG is then connected back to the 
lpMTG to provide an utterance context that leads to the pre-activation/ 
priming of (aspects of) LS representations associated with potential 
upcoming words (see Brouwer & Hoeks, 2013, Section 4.3, for a discus-
sion on the temporal dynamics of the communication between the lIFG 
and the lpMTG).

3.2 Neural meaning composition
The neurocomputational instantiation of RI theory directly implements 
the cortical instantiation of RI in a recurrent neural network architecture 
(see Fig. 3B). This architecture consists of five layers, starting with an input 
(‘ac/vc’) layer at which the model receives perceived word forms. These 
perceived word forms are projected through a ‘retrieval’ (lpMTG) layer, 
which combines it with a top-down CS utterance context projection, from 
the later ‘integration’ (lIFG) layer, to map the perceived word form in 
context onto a LS word meaning representation in the ‘retrieval_output’ 
layer. This retrieved LS word meaning representation is then projected 
through a recurrent ‘integration’ (lIFG) layer, which combines it with the 
previous utterance context, to produce an updated CS utterance repre-
sentation in the ‘integration_output’ layer. The model processes sentences 
on an incremental, word-by-word basis, and at each word, N400 ampli-
tude is estimated as the degree of change induced in the ‘retrieval’ layer, 
whereas P600 amplitude is estimated as the degree of change induced in the 
‘integration’ layer. Using these explicit linking hypotheses to the N400 and 
P600, the model has been shown to account for key psycholinguistic 
processing phenomena (Brouwer et al., 2017, 2021b).

Critically, the neurocomputational instantiation of RI theory is not 
only explicit about its architecture and processing mechanisms, but also 
about the nature of the neural LS and CS representations that it assumes. 
The neural LS representations of word meaning are rather straightforwardly 
modeled as DLS representations (using the Correlated Occurrence 
Analogue to Lexical Semantics, COALS; Rohde et al., 2009), such that the 
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dimensions of these vectors are proxies for componential semantic features. 
In the most recent instantiation of the model (Brouwer et al., 2021b), the 
neural CS representations are modeled using the vector representations 
from Distributional Formal Semantics (DFS) (Venhuizen et al., 2022). As 
introduced in Section 2.2.2, DFS assumes a meaning space , consisting 
of set of formal model structures, such that each model M deter-
mines the truth value of each proposition p . Together these models 
form a continuous vector space ( ), and comprehension in the neuro-
computational model involves navigating this vector space on a word-by- 
word basis to recover utterance-final propositional meaning.

This notion of comprehension as meaning-space navigation is illustrated 
in Fig. 4. The cube in Fig. 4A represents the meaning space presented in 
Venhuizen et al. (2022) (see also Fig. 1), mapped from 150=
dimensions into three dimensions (using multi-dimensional scaling, MDS). 
The propositional meanings that are shown represent binary vectors for a 
subset of the propositions in , as well as two compositional meanings 
derived from combining these propositions: enter(mike, bar) ∧ order 
(mike, cola) and enter(mike, bar) ∧ order(mike, fries). The position of these 
vectors relative to each other directly reflects the world knowledge in the 
meaning space; propositions that are likely to co-occur will be positioned 
closer to each other in the meaning space, and vice versa. The model learns 
to navigate this meaning space on a word-by-word basis, producing real- 
valued CS output vectors (see Fig. 3B) that directly reflect world-knowl-
edge driven inferences. Critically, the trajectory through meaning space is 
directly influenced by the linguistic experience that the model is exposed 
to, in terms of the frequency of utterance-meaning pairs encountered 
during training, such that the model favors trajectories for more frequently 
encountered word sequences (Venhuizen et al., 2019a, 2019b).

This navigation process is illustrated in Fig. 4A for the sentence prefix 
“Mike entered the bar, he ordered …”. After processing this sentence 
prefix, the model finds itself in a state that is more in line with the sen-
tence-final meaning enter(mike, bar) ∧ order(mike, cola) than with the 
meaning enter(mike, bar) ∧ order(mike, fries). If the sentence prefix is then 
continued with either “cola” or “fries”, processing the word “cola” results 
in a more expected transition compared to processing the word “fries”—as 
measured by the information-theoretic notion of surprisal (Hale, 2001; 
Levy, 2008), which in DFS is defined as the negative logarithm of the 
probability of the current point in meaning space given the previous point 
(see Venhuizen et al., 2019a). After processing the final word, the model 
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Fig. 4 Comprehension as meaning-space navigation. (A) Three-dimensional 
mapping of the meaning-space presented in Venhuizen et al. (2022). The gray points 
show a subset of the propositions that define the meaning space, as well as two 
complex propositions derived from combining them. The colored points show the 
word-by-word trajectories for the sentences “Mike entered the bar, he ordered [cola/ 
fries]”. The numbers represent the expectancy (information-theoretic surprisal) of the 
sentence final words “cola” and “fries”. (B) Word-by-word inference scores for pro-
positions pertaining to referential presupposition at each word of the sentence 
“someone called the waiter, she ordered cola”. Reproduced with permission (CC BY-NC- 
ND 4.0) from Venhuizen et al. (2022). 
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arrives at a point in space that approximates the intended sentence-final 
meaning for each sentence.

Critically, as each point in the meaning space carries its own probability 
in relation each other point in meaning space, the model updates its 
inferences about the communicated state-of-affairs on a word-by-word 
basis. This is illustrated in Fig. 4B, which plots the inference score, as 
defined in Equation (2), for a subset of propositions pertaining to referential 
presuppositions, based on the CS representation at the output layer of the 
model at each word of the sentence “someone called the waiter, she 
ordered cola”. While the sentence-initial meaning vectors show no strong 
inferences regarding these presuppositions, the introduction of “waiter” 
leads to the strong inference (entailment) that a waiter is present in the 
described state-of-affairs. Furthermore, linguistic experience leads the 
model to infer the presence of female referents (elli and nancy) at the word 
“she”. At the sentence-final word “cola”, the set of probabilistic inferences 
reflects the ‘world knowledge’-driven, non-literal interpretation that the 
model assigns to this sentence, namely that elli is a referent in the described 
situation (driven by the high probability of elli ordering cola in the meaning 
space; see Venhuizen et al., 2022 for details).

This comprehension as meaning-space navigation has several important 
implications. First of all, meaning composition in the model is an incre-
mental process in which the LS meaning associated with a perceived word, 
in context of the CS representation established thus far, effectively triggers 
a transition in CS meaning-space. This transition is effectuated by the 
“integration” (lIFG) layer of the model, which updates its state based on its 
current activity pattern—its current state—and the LS of an incoming 
word. The degree to which this state changes as a result of processing an 
incoming word is an estimate of P600 amplitude in the model. Secondly, 
the retrieval of word meaning is effectively the activation of a word- 
associated LS representation in a DLS meaning-space, and this retrieval is 
directly affected by the state of the “integration” (lIFG) layer; that is, the 
“retrieval” (lpMTG) updates its state based on a word form perceived in 
the “ac/vc” layer, as well as the top-down state of the “integration” (lIFG) 
layer to retrieve the word-associated LS representation. The degree of 
change in this state is an estimate of N400 amplitude in the model. LS and 
CS meaning thus inhabit distinct meaning spaces, but are critically inter-
twined: compositional meaning construction involves integrating LS 
representations into CS space, and the current point in CS space directly 
affects the anticipation of aspects of upcoming LS representations.
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3.3 Decoding meaning representations from neural activity
According to RI theory, the construction of compositional utterance 
meaning involves a dynamic interplay between two distinct models of 
meaning. Conceptual meaning, on the one hand, is captured by an LS 
space, with representations stored across the association cortices, and the 
lpMTG serving has an epicenter/hub for their retrieval. Compositional 
utterance meaning, on the other hand, is captured by a CS space, with the 
lIFG serving as an epicenter/hub for the construction of an unfolding CS 
representation, which involves compositionally integrating LS representa-
tions into this CS space. While the neurocomputational instantiation of RI 
theory is both representationally explicit about LS and CS, as well as 
mechanistically explicit about their interplay in the compositional process, 
these representations and mechanisms are only simplified abstractions of 
those underlying comprehension in the brain. Indeed, the ultimate aim is 
to investigate these representations and mechanisms in the brain more 
directly.

Recent advances in neuroscience and artificial intelligence have led to 
the development of mapping models that do enable the direct investigation of 
neural meaning representation and computation in the brain through either 
decoding or encoding (King & Dehaene, 2014; Poldrack, 2011). These 
mapping models traditionally start from a set of words, LS representations 
for these words (of which the dimensions may or may not be directly 
interpretable; see Frisby et al., 2023), and neural activity patterns elicited by 
the perception of these words, such as individual voxel activation levels 
from fMRI. Decoding models then seek to accurately predict each LS 
dimension from these voxel activation levels, effectively yielding models 
that quantify the degree to which each individual voxel contributes to a 
particular LS dimension. Encoding models, in turn, start from the LS 
representations, and aim to predict each voxel activation level from the LS 
dimensions, yielding models that quantify the degree to which each 
dimension contributes to a given voxel. Critically, these encoding models 
can also be used for decoding, by finding the most likely cause for a pattern 
of observed activity, which can for instance be achieved through informed 
search (see Tang et al., 2023, for such an approach).

While early mapping models using static LS representations—con-
structed using language models or human ratings—have shown that it is 
possible to successfully decode the meaning of words or sentences from 
neural activity (e.g., Mitchell et al., 2008; Pereira et al., 2018), more recent 
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models have pushed the state-of-the-art to the decoding of continuous 
language by using the contextualized representations from large language 
models (Tang et al., 2023). Beyond practical implications of such models 
for brain-computer interfaces, they also provide a toolkit for directly 
investigating the representation and computation of meaning in the brain. 
However, before mapping models can be harnessed to address such fun-
damental questions, important methodological and theoretical challenges 
need to be addressed. These challenges include the inconsistency of extant 
mapping results (e.g., Frisby et al., 2023) and the difficulty in reconciling 
these results with neurocognitive theory (e.g., compare the decoding 
results by Tang et al., 2023 to the cortical instantiation of RI by Brouwer & 
Hoeks, 2013). Furthermore, these models predominantly focus on LS 
representations and are challenged by the theoretical difficulties of the 
large-scale modeling of multi-word CS representations, as well as the 
difficulties imposed by the spatiotemporal dynamics of LS and CS repre-
sentation and computation in the compositional process (see also the dis-
cussion below). While these challenges may not be straightforwardly 
overcome, mapping models do hold the promise to be instrumental in 
answering fundamental, fine-grained questions about the representation 
and computation of meaning in the brain.

4. The principle of compositionality revisited

The principle of compositionality assumes a close formal relationship 
between word-level LS meaning and utterance-level CS meaning, since in 
its standard formulation, the CS meaning of an expression directly derives 
from the LS meanings of its constituents and the (syntactic) rules by which 
they are combined (Partee, 1995). Despite this assumed close relationship, 
semantic theories of LS and CS meaning have developed into rather dis-
parate fields of study. Models of LS meaning focus on representations that 
capture conceptual knowledge and structure, but attempts at introducing 
compositionality into these models—e.g., through vector averaging or 
multiplication (Mitchell & Lapata, 2010)—have had limited success (see 
Pavlick, 2022, for discussion). Models of CS meaning, on the other hand, 
focus on representations that capture truth-conditional entailment rela-
tions, but treat LS meaning in terms of mathematical functions, which do 
not capture any conceptual structure or similarity. While there have been 
attempts to incorporate (distributional) LS representations into such CS 
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models, these often result in frameworks in which LS and CS repre-
sentations are patched together through complex mathematical machinery, 
but do not fully integrate their semantic contributions (e.g., Asher et al., 
2016; Beltagy et al., 2016; Garrette et al., 2014). Taken together, this raises 
the question of whether connecting models of LS and CS meaning in a 
single, unified semantic system is the right way forward.

4.1 Compositionality as a non-linear mapping between 
meaning spaces

Experimental findings and theoretical modeling within the neurocognition 
of language reveal that the human comprehension system does indeed 
harness both a model for LS meaning as well as a model for CS meaning. 
Electrophysiological research on language comprehension has shown that 
the N400 and the P600—the two most salient language-related compo-
nents of the ERP signal—are differentially sensitive to aspects of LS and CS 
meaning, respectively. That is, the degree to which word-associated LS 
meaning is contextually anticipated has been shown to result in a reduction 
of N400 amplitude (e.g., Federmeier & Kutas, 1999; Kutas, 1993), while 
expectations regarding utterance-level CS meaning result in a reduction of 
P600 amplitude (e.g., Aurnhammer et al., 2023). This differential sensi-
tivity of the N400 and P600 forms the core of the Retrieval-Integration 
theory of language comprehension (Brouwer et al., 2012; Venhuizen & 
Brouwer, 2025), an integrated theory of language electrophysiology with 
an explicit functional-anatomic mapping (Brouwer & Hoeks, 2013) and 
neurocomputational instantiation (Brouwer et al., 2017, 2021b). On RI 
theory, the N400 component of the ERP signal indexes the retrieval of the 
LS meaning of a word, a process that is directly modulated by top-down 
CS utterance context. The P600 component, in turn, indexes the inte-
gration of this retrieved LS word meaning into an unfolding CS repre-
sentation of utterance meaning. Hence, RI theory assumes LS and 
CS meaning to coexist and interact during language comprehension. 
Furthermore, the functional-anatomic mapping of RI assumes two distinct 
cortical epicenters/hubs, with the lpMTG serving as an epicenter/hub for 
the retrieval of LS representations that are assumed to be stored across the 
association cortices, and the lIFG as an epicenter/hub for CS meaning 
construction. These epicenters are wired together through dorsal and 
ventral white matter pathways, supporting the cyclic circuit required for 
top-down CS context to modulate the retrieval of incoming LS word 
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meaning, and bottom-up LS meaning to be integrated into a representation 
of CS meaning.

The neurocomputational instantiation of RI theory representationally 
and mechanistically explicates this functional-anatomic mapping, and 
suggests that rather than connecting LS and CS meaning in a rule-based, 
formal semantic system that mathematically conflates their distinct repre-
sentational currencies, compositionality may be achieved through a non- 
linear mapping integrating representations from an LS meaning space into a 
meaning space for CS; that is, the neurocomputational instantiation of RI 
suggests that compositionality may be an emergent epiphenomenon 
of the neural machinery implementing the comprehension system. 
Fundamentally, this is, however, still consistent with the assumption 
underlying the principle of compositionality that the meaning of a complex 
expression is determined by the meanings of the individual words that 
constitute the expression, and the way that they are combined.

Interestingly, this notion of compositinal integration appears to be similar 
to the way in which large language models (LLMs) construct meaning. 
LLMs also start from LS representations, in terms of word embeddings, 
which they progressively and non-linearly map into deeper, contextualized 
embeddings. The impressive human-like comprehension behavior of such 
LLMs has led to suggestions that they implement mechanisms that are 
highly similar to those implemented by the comprehension system in the 
human brain (Goldstein et al., 2022; Schrimpf et al., 2021). While such 
conclusions may be premature (see, e.g., Krieger et al., 2024), LLMs do 
offer interesting systems for further investigation. For one, the con-
textualized embeddings that these models construct may be the closest 
thing we have to wide-coverage CS representations. Hence, a better 
understanding of these representations by grounding them in linguistic 
theory and relating them to neural activity through mapping models, may 
further our understanding of how CS meaning is represented in the brain. 
Furthermore, as LLMs also start from LS representations, they serve as 
examples of systems that construct approximate CS representations trough 
non-linear mappings rather than formal, rule-based mathematical 
machinery, offering a means to investigate such mappings on a large scale.

4.2 Compositionality is continuous
The LS and CS models of meaning that are assumed by RI theory account 
for fundamentally distinct types of knowledge. The LS model is assumed to 
capture the conceptual structure and similarity that is associated with 
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semantic memory. This includes conceptual knowledge regarding semantic 
categories and features, for instance regarding taxonomy (e.g., is animate, is 
mammal), function (e.g., is edible, cutting tool), and visual form (e.g., has legs, 
made of steel) (McRae et al., 2005). While RI theory is agnostic about the 
precise nature of these LS representations, the neurocomputational 
instantiation employs DLS representations deriving from word co-occur-
rences to capture conceptual similarity (based on Rohde et al., 2009; see 
Brouwer et al., 2017). RI theory does, however, critically assume the LS 
meaning space to be continuous in nature; that is, since the N400 has also 
been shown to be sensitive in a graded manner to the degree of semantic 
similarity (in terms of features and/or categories; see e.g., Bentin et al., 
1985; Boddy, 1981; Federmeier & Kutas, 1999), the LS meaning space 
should capture gradient conceptual similarity. More concretely, concepts 
such as “bar” and “restaurant” should have a certain degree of similarity 
within the LS meaning space, capturing that both have shared semantic 
features like is location, sells food, but also that they are associated with 
different features such as has bartender and has waiter, respectively.

RI theory asserts that retrieved LS meaning is integrated into an 
utterance-wide CS representation on a word-by-word basis. More for-
mally, utterance representations are assumed to be dynamic in the sense 
that CS meaning is captured in terms of ‘context-change potential’ 
(Nouwen et al., 2022); CS representations provide both a representation of 
the utterance so far, as well as a context for the retrieval of LS meaning 
associated with incoming words and the integration of this meaning into an 
updated CS representation. As such, RI assumes that the CS model allows 
for incremental composition of utterance-level meaning — similar to the 
way in which a dynamic semantic framework such as Discourse Repre-
sentation Theory formalizes meaning construction.

Furthermore, the CS representations assumed by RI should not only 
capture literal utterance-level entailments that are the focus of standard 
truth-conditional semantic theories, but should also support probabilistic 
inferences that reflect ‘world knowledge’-driven expectations; that is, since 
the P600 has been shown to have graded sensitivity to ‘world knowledge’- 
driven plausibility manipulations (Aurnhammer et al., 2023), the inte-
grative composition of CS representations should capture this gradedness. 
Indeed, the representations from the DFS framework (Venhuizen et al., 
2022), which formalize CS meaning in the most recent computational 
instantiation of RI theory (Brouwer et al., 2021b), have been shown to 
capture graded ‘world knowledge’-driven inferences as part of a high- 
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dimensional propositional meaning space. Comprehension in the model 
can be conceptualized as navigating this meaning space on a word-by-word 
basis, and trajectories through this space are influenced by the linguistic 
experience that the model is exposed to, such that gradedness can also arise 
from differences in utterance frequencies. In this model, CS meaning 
reflects propositional structure and similarity independent of feature-based 
LS similarity; that is, in the CS meaning space, sub-propositional meaning 
representations that pertain to concepts such as “bar” and “restaurant” are 
highly dissimilar, since the proposition enter(mike, bar), for instance, leads to 
a probabilistic inference that call(mike, bartender), while it entails the nega-
tion ¬ enter(mike, restaurant).

Critically, RI assumes that LS and CS meaning reside in distinct, but 
interacting meaning spaces, and that both of these meaning spaces are 
continuous in nature. As a result, the non-linear mapping from LS repre-
sentations into a CS meaning space is in itself taken to be a continuous 
process, in that changes in contextually activated conceptual LS knowledge 
during comprehension will affect utterance-level CS meaning in a non-linear 
manner. Furthermore, the non-linear mapping from LS representations into 
a CS space may generalize beyond the concepts and propositional state-of- 
affairs that the comprehension system has experienced, thereby providing a 
basis for productivity and systematicity of language use, within the confines 
of these spaces themselves. That is, because the meaning spaces themselves 
are structured and capture word- and utterance-level inferences, models that 
describe compositional comprehension as a mapping between these spaces 
can map novel combinations of LS representations into the CS meaning 
space (productivity), and also construct novel CS meanings (systematicity), 
under the assumption that these meanings can be interpreted within the CS 
meaning space (see also Calvillo et al., 2021; Frank et al., 2009).

4.3 Compositionality is expectation-based
Expectation-based theories of language comprehension hypothesize that 
the comprehension system continuously generates predictions about 
upcoming words given the unfolding context, be it implicitly or explicitly. 
On Surprisal Theory, these predictions are directly related to processing 
effort, such that the more unexpected an incoming word is, the higher its 
processing difficulty, e.g., as measured using reading times (Hale, 2001; 
Levy, 2008). Indeed, the cyclic nature of RI theory renders it inherently 
expectation-based: the top-down CS context affects both expectations 
about the conceptual LS meaning associated with an incoming word, as 
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well as expectations about CS meaning resulting from integrating this LS 
meaning (see also Aurnhammer et al., 2021; Venhuizen & Brouwer, 2025). 
The degree of contextual expectation leads to graded predictions regarding 
N400 and P600 modulations, where the retrieval processes underlying the 
N400 are modulated by the degree to which LS features are pre-activated 
by the context, and the integration processes underlying the P600 by what 
can effectively be conceptualized as “comprehension-centric” surprisal—the 
likelihood of the current state in CS space given the previous state (Brouwer 
et al., 2021b; Venhuizen et al., 2019a).

The expectation-based nature of RI theory raises the question of 
what drives expectations about LS and CS meaning. Starting with CS 
meaning, expectations are directly conditioned on the current state in 
the CS meaning space. As each state inherently carries its own prob-
ability in the world, as well as its co-occurrence probability with other 
points in the meaning space, each word-induced transition in meaning 
space may be more or less expected within the CS space itself. In other 
words, world knowledge determines which states in the meaning space 
are positioned close to each other, thereby driving expectations 
regarding upcoming linguistic input. Critically, however, these transi-
tions in meaning space are also modulated by the linguistic experience 
that is captured by the mapping from LS to CS representations in terms 
of the frequency with which certain combinations of LS meanings are 
mapped onto CS meanings (Venhuizen et al., 2019a). This linguistic 
experience reflects how often states-of-affairs are talked about in lan-
guage, independent of their probability in the world. Expectations 
deriving from linguistic experience may often be in agreement with 
those deriving from world knowledge, e.g., when describing a canonical 
situation like “John entered the cinema and ordered steak /popcorn ”, 
where the continuation “steak” is unexpected both in terms of our 
knowledge of the world and in terms of how frequently this situation 
would be described. Critically, however, world knowledge and linguistic 
experience may also disagree; that is, there are highly likely states-of- 
affairs (expected according to world knowledge) that are very unin-
formative and unlikely to be talked about (unexpected according to 
linguistic experience), e.g., “Mary drove through a green light”. Indeed, 
it is far more likely to hear someone state that “Mary drove through a red 
light”, as this indicates a state-of-affairs that is less probable to occur in 
the world (assuming Mary respects traffic laws). This shows that 
expectations about CS meaning are thus driven by the propositional 
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co-occurrence structure of the CS space itself, as well as by bottom-up 
linguistic experience (see Venhuizen et al., 2019a, for discussion).

Expectations about LS meaning, in turn, derive from an interplay 
between the top-down propositional co-occurrence structure of the CS 
space, bottom-up linguistic experience, as well as world knowledge-driven 
conceptual structure of semantic memory. First of all, the mapping of word 
form onto a LS meaning representation—i.e., retrieval of word mean-
ing—is modulated by top-down CS context, meaning that similar CS 
contexts will lead to the anticipation of similar LS meanings. Which LS 
meanings are anticipated in a given CS context, however, is determined by 
linguistic experience; that is, it is linguistic experience that shapes the 
relative strength of the association between a given CS context and specific 
LS meanings. Finally, LS meanings that are positioned relatively close in the 
conceptual meaning space will share activation patterns and may therefore 
also influence lexical-level expectations. Hence, expectations about both 
LS and CS meaning are modulated by the linguistic experience that the 
system is exposed to, as well as both conceptual and propositional world 
knowledge (see also Troyer & Kutas, 2020a, 2020b, for direct empirical 
investigations of the influence of world knowledge on word processing).

4.4 Compositionality is spatiotemporally extended
The functional-anatomic mapping of RI theory assumes a spatial segregation 
between the epicenters/hubs for retrieval and integration in terms of the 
lpMTG (plus association cortices) and lIFG, respectively (Brouwer & Hoeks, 
2013). This spatial segregation can be addressed using mapping models, as 
discussed in Section 3.3. At a bare minimum, this means that mapping model 
investigations into LS meaning, CS meaning, and the compositional process 
should honor this segregation: the lpMTG and association cortices are pre-
dicted to be more involved in LS retrieval, whereas the lIFG is predicted to 
be more focally involved in CS integration. This state of affairs is, however, 
further complicated by the temporal dynamics of the assumed retrieval and 
integration processes; that is, the retrieval and integration processes are 
known to be active simultaneously, leading the N400 and P600 to spatio-
temporally overlap in the scalp-recorded ERP signal (see Brouwer et al., 
2021a; Delogu et al., 2019, 2021, 2025). Beyond complications for inter-
preting this scalp-recorded ERP signal (see Brouwer & Crocker, 2017, for 
discussion), this implies that the compositional process is also spatiotempo-
rally extended. As a consequence, mapping models should take both the 
spatial and temporal dynamics of the compositional process into account. 
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Going forward, we should thus disentangle LS and CS representation in 
space, by building mapping models that target data from neuroimaging 
methods with high spatial resolution such as fMRI, as well as in time, 
through mapping models targeting data from neuroimaging methods with 
high temporal resolution such as electroencephalography (EEG). To syn-
thesize the results on space and time, mapping models could be com-
plemented by neurocomputational models that explicate the spatiotemporal 
dynamics underlying compositionality in comprehension, such as a tempo-
rally-extended version of the neurocomputational instantiation of RI theory 
(see Brouwer et al., 2017, Section 5.4, for discussion).

5. Conclusions

Formal modeling approaches in linguistic theory and the neurocog-
nition of language comprehension are both concerned with the question of 
how meaning is represented and constructed from linguistic signal. The 
principle of compositionality, which assumes that the meaning of a complex 
expression is defined as a function of the meaning of its parts and the way 
they are combined, has long been a hallmark of formal semantic approaches. 
Extant models of semantic theory, however, focus on either capturing lexical 
semantic meaning in terms of the conceptual knowledge and structure, or 
compositional meaning in terms of truth-conditional entailments and 
inferences. Attempts at directly integrating these models of lexical semantics 
with models of utterance-level compositional semantics—to formalize a 
single semantic framework for compositional meaning representation and 
construction—have proven challenging, and question the validity of this 
endeavor. On the other hand, recent neurocognitive theorizing and mod-
eling reveals an architecture for language comprehension that assumes 
Retrieval-Integration cycles, in which word-by-word processing involves 
the retrieval of lexical semantic word meaning from long-term memory, and 
the integration of these lexical semantic meanings into a coherent repre-
sentation of compositional semantic utterance meaning.

Combining insights from linguistic theory regarding the nature of the 
representations for lexical semantics and utterance-level compositional 
semantics with the computational mechanisms assumed to underlie 
Retrieval-Integration cycles, paints a picture in which compositional 
meaning construction harnesses two separate, but interacting models of 
meaning—one for lexical semantics and one for compositional 
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semantics—that dynamically interact during the incremental process of 
word-by-word meaning construction. Within this architecture, composi-
tionality arises from a non-linear mapping of lexical semantic representa-
tions into a space for utterance-level compositional meaning. This results in 
a notion of compositional integration, which emphasizes the continuous 
nature of the compositional process and its underlying representations, the 
expectation-based dynamics of word-by-word meaning composition, as 
well as the observation that incremental meaning construction is a spa-
tiotemporally-extended process in the brain. This novel perspective on 
compositionality—centered around two models of meaning—thus com-
bines insights from linguistic and neurocognitive theory, and serves as a 
starting point for more integrative, interdisciplinary approaches towards 
modeling the representation and computation of the meaning of words, 
sentences, and larger discourses.

References
Asher, N., & Lascarides, A. (2003). Logics of conversation. Cambridge University Press.
Asher, N., Van de Cruys, T., Bride, A., & Abrusán, M. (2016). Integrating type theory and 

distributional semantics: A case study on adjective–noun compositions. Computational 
Linguistics, 42(4), 703–725.

Aurnhammer, C., Delogu, F., Brouwer, H., & Crocker, M. W. (2023). The P600 as a 
continuous index of integration effort. Psychophysiology, 60, e14302.

Aurnhammer, C., Delogu, F., Schulz, M., Brouwer, H., & Crocker, M. W. (2021). 
Retrieval (N400) and integration (P600) in expectation-based comprehension. PLOS 
ONE, 16(9), e0257430.

Baroni, M., Bernardi, R., & Zamparelli, R. (2014). Frege in space: A program of com-
positional distributional semantics. Linguistic Issues in Language Technology (LiLT), 9, 
241–346.

Baroni, M., & Zamparelli, R. (2010). Nouns are vectors, adjectives are matrices: 
Representing adjective-noun constructions in semantic space. Proceedings of the 2010 
conference on empirical methods in natural language processing. Association for Computational 
Linguistics 1183–1193.

Beltagy, I., Roller, S., Cheng, P., Erk, K., & Mooney, R. J. (2016). Representing meaning 
with a combination of logical and distributional models. Computational Linguistics, 42(4), 
763–808.

Bentin, S., McCarthy, G., & Wood, C. C. (1985). Event-related potentials, lexical decision 
and semantic priming. Electroencephalography and Clinical Neurophysiology, 60(4), 343–355.

Boddy, J. (1981). Evoked potentials and the dynamics of language processing. Biological 
Psychology, 13, 125–140.

Bornkessel-Schlesewsky, I., & Schlesewsky, M. (2008). An alternative perspective on 
“semantic P600” effects in language comprehension. Brain Research Reviews, 59(1), 
55–73.

Brouwer, H., Crocker, M. W., Venhuizen, N. J., & Hoeks, J. C. (2017). A neuro-
computational model of the N400 and the P600 in language processing. Cognitive Science, 
41, 1318–1352.

32                                                                     Noortje J. Venhuizen and Harm Brouwer 

http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref1
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref2
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref2
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref2
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref3
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref3
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref4
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref4
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref4
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref5
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref5
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref5
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref6
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref6
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref6
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref6
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref7
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref7
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref7
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref8
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref8
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref9
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref9
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref10
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref10
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref10
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref11
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref11
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref11


Brouwer, H., & Crocker, M. W. (2017). On the proper treatment of the N400 and P600 in 
language comprehension. Frontiers in Psychology, 8, 1327.

Brouwer, H., Delogu, F., & Crocker, M. W. (2021a). Splitting event-related potentials: 
Modeling latent components using regression-based waveform estimation. European 
Journal of Neuroscience, 53(4), 974–995.

Brouwer, H., Delogu, F., Venhuizen, N. J., & Crocker, M. W. (2021b). Neurobehavioral 
correlates of surprisal in language comprehension: A neurocomputational model. 
Frontiers in Psychology, 12, 615538.

Brouwer, H., Fitz, H., & Hoeks, J. (2012). Getting real about semantic illusions: 
Rethinking the functional role of the P600 in language comprehension. Brain Research, 
1446, 127–143.

Brouwer, H., & Hoeks, J. C. (2013). A time and place for language comprehension: 
Mapping the N400 and the P600 to a minimal cortical network. Frontiers in Human 
Neuroscience, 7, 758.

Burgess, C. (1998). From simple associations to the building blocks of language: Modeling 
meaning in memory with the HAL model. Behavior Research Methods, Instruments, & 
Computers, 30(2), 188–198.

Calvillo, J., Brouwer, H., & Crocker, M. W. (2021). Semantic systematicity in connec-
tionist language production. Information, 12(8), 329.

Carnap, R. (1988). Meaning and necessity: A study in semantics and modal logicVol. 30. 
University of Chicago Press.

Chomsky, N. (1957). Syntactic structures. Netherlands: Mouton & Co., N.V., ’s-Gravenhage.
Clark, S. (2012). Vector space models of lexical meaning. In S. Lappin, & C. Fox (Eds.). 

Handbook of contemporary semantics–second edition (pp. 493–522). Wiley-Blackwell.
Coecke, M. S. B., & Clark, S. (2011). Mathematical foundations for a compositional dis-

tributional model of meaning. Festschrift for Joachim Lambek, volume 36 of linguistic analysis. 
Linguistic Analysis 345–384.

Coecke, B., Sadrzadeh, M., & Clark, S. (2010). Mathematical foundations for a compo-
sitional distributional model of meaning. arXiv Preprint. arXiv:1003.4394.

Davidson, D. (1969). The individuation of events. Essays in honor of Carl G. Hempel: A tribute on 
the occasion of his sixty-fifth birthday. Springer 216–234.

Delogu, F., Aurnhammer, C., Brouwer, H., & Crocker, M. W. (2025). On the biphasic 
nature of the N400-P600 complex underlying language comprehension. Brain and 
Cognition, 186, 106293.

Delogu, F., Brouwer, H., & Crocker, M. W. (2019). Event-related potentials index lexical 
retrieval (N400) and integration (P600) during language comprehension. Brain and 
Cognition, 135, 103569.

Delogu, F., Brouwer, H., & Crocker, M. W. (2021). When components collide: 
Spatiotemporal overlap of the N400 and P600 in language comprehension. Brain 
Research, 1766, 147514.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep 
bidirectional transformers for language understanding. In: Proceedings of the 2019 
conference of the North American chapter of the association for computational lin-
guistics: human language technologies, volume 1 (long and short papers), 4171–4186.

Erk, K. (2012). Vector space models of word meaning and phrase meaning: A survey. 
Language and Linguistics Compass, 6(10), 635–653.

Federmeier, K. D. (2022). Connecting and considering: Electrophysiology provides insights 
into comprehension. Psychophysiology, 59(1), e13940.

Federmeier, K. D., & Kutas, M. (1999). A rose by any other name: Long-term memory 
structure and sentence processing. Journal of Memory and Language, 41(4), 469–495.

Two models of meaning                                                                                        33 

http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref12
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref12
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref13
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref13
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref13
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref14
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref14
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref14
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref15
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref15
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref15
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref16
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref16
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref16
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref17
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref17
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref17
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref18
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref18
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref19
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref19
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref20
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref21
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref21
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref22
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref22
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref22
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref23
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref23
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref24
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref24
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref24
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref25
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref25
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref25
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref26
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref26
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref26
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref27
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref27
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref28
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref28
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref29
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref29


Federmeier, K. D., & Laszlo, S. (2009). Time for meaning: Electrophysiology provides 
insights into the dynamics of representation and processing in semantic memory. 
Psychology of Learning and Motivation, 51, 1–44.

Firth, J. (1957). A synopsis of linguistic theory, 1930–1955. Studies in Linguistic Analysis, 
10–32.

Frank, S. L., Haselager, W. F., & van Rooij, I. (2009). Connectionist semantic systema-
ticity. Cognition, 110(3), 358–379.

Frisby, S. L., Halai, A. D., Cox, C. R., Ralph, M. A. L., & Rogers, T. T. (2023). Decoding 
semantic representations in mind and brain. Trends in Cognitive Sciences, 27(3), 258–281.

Garrette, D., Erk, K., & Mooney, R. (2014). A formal approach to linking logical form and 
vector-space lexical semantics. In H. Bunt, J. Bos, & S. Pulman (Vol. Eds.), Computing 
Meaning, Text, Speech and Language Technology. 47. Computing Meaning, Text, Speech and 
Language Technology (pp. 27–48). Springer.

Geurts, B., & Maier, E. (2013). Layered Discourse Representation Theory. In A. Capone, 
F. L. Piparo, & M. Carapezza (Eds.). Perspectives on linguistic pragmatics (pp. 311–327). 
Springer International Publishing.

Golden, R. M., & Rumelhart, D. E. (1993). A parallel distributed processing model of story 
comprehension and recall. Discourse Processes, 16(3), 203–237.

Goldstein, A., Zada, Z., Buchnik, E., Schain, M., Price, A., Aubrey, B., Nastase, S. A., Feder, 
A., Emanuel, D., Cohen, A., et al. (2022). Shared computational principles for language 
processing in humans and deep language models. Nature Neuroscience, 25(3), 369–380.

Gouvea, A. C., Phillips, C., Kazanina, N., & Poeppel, D. (2010). The linguistic processes 
underlying the P600. Language and Cognitive Processes, 25(2), 149–188.

Grefenstette, E., & Sadrzadeh, M. (2015). Concrete models and empirical evaluations for 
the categorical compositional distributional model of meaning. Computational Linguistics, 
41(1), 71–118.

Hale, J. T. (2001). A probabilistic Earley parser as a psycholinguistic model. Proceedings of the 
second meeting of the North American chapter of the association for computational linguistics on 
language technologies. Stroudsburg, PA: Association for Computational Linguistics 1–8.

Hoeks, J. C. J., & Brouwer, H. (2014). Electrophysiological research on conversation and 
discourse processing. In T. M. Holtgraves (Ed.). The Oxford handbook of language and social 
psychology (pp. 365–386). New York: Oxford University Press.

Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, 
and consciousness. Cambridge, MA: Harvard University Press.

Kamp, H. (1980). Some remarks on the logic of change, part I. In C. Rohrer (Ed.). Time, 
tense, and quantifiers: Proceedings of the Stuttgart conference on the logic of tense and quantification 
(pp. 135–180). Berlin, New York: Max Niemeyer Verlag.

Kamp, H. (1981). A theory of truth and semantic representation. In J. A. G. Groenendijk, 
T. M. V. Janssen, & M. B. J. Stokhof (Eds.). Formal methods in the study of language, 
proceedings of the third Amsterdam colloquium (pp. 277–322). Amsterdam: Mathematisch 
Centrum.

Kamp, H., & Reyle, U. (1993). From discourse to logic: Introduction to modeltheoretic semantics of 
natural language, formal logic and Discourse Representation Theory. Dordrecht: Kluwer.

Kamp, H., van Genabith, J., & Reyle, U. (2011). Discourse representation theory. In D. M. 
Gabbay, & F. Guenthner (Vol. Eds.), Handbook of philosophical logic. Vol. 15. Handbook of 
philosophical logic (pp. 125–394). Netherlands: Springer.

King, J.-R., & Dehaene, S. (2014). Characterizing the dynamics of mental representations: 
The temporal generalization method. Trends in Cognitive Sciences, 18(4), 203–210.

Krieger, B., Brouwer, H., Aurnhammer, C., & Crocker, M. W. (2024). On the limits of 
LLM surprisal as functional explanation of ERPs. Proceedings of the annual meeting of the 
cognitive science society, Vol. 46.

34                                                                     Noortje J. Venhuizen and Harm Brouwer 

http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref30
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref30
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref30
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref31
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref31
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref32
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref32
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref33
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref33
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref34
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref34
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref34
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref34
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref35
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref35
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref35
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref36
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref36
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref37
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref37
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref37
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref38
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref38
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref39
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref39
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref39
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref40
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref40
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref40
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref41
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref41
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref41
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref42
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref42
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref43
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref43
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref43
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref44
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref44
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref44
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref44
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref45
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref45
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref46
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref46
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref46
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref47
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref47
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref48
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref48
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref48


Kuperberg, G. R. (2007). Neural mechanisms of language comprehension: Challenges to 
syntax. Brain Research, 1146, 23–49.

Kutas, M. (1993). In the company of other words: Electrophysiological evidence for single- 
word and sentence context effects. Language and Cognitive Processes, 8(4), 533–572.

Kutas, M., & Federmeier, K. D. (2000). Electrophysiology reveals semantic memory use in 
language comprehension. Trends in Cognitive Sciences, 4(12), 463–470.

Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the 
N400 component of the event-related brain potential (ERP). Annual Review of 
Psychology, 62, 621–647.

Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect 
semantic incongruity. Science, 207(4427), 203–205.

Kutas, M., & Hillyard, S. A. (1984). Brain potentials during reading reflect word expectancy 
and semantic association. Nature, 307(5947), 161–163.

Kutas, M., van Petten, C., & Kluender, R. (2006). Psycholinguistics electrified II: 
1994–2005. In M. J. Traxler, & M. A. Gernsbacher (Eds.). Handbook of psycholinguistics 
(pp. 659–724). (2nd ed.). New York: Elsevier.

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent 
semantic analysis theory of acquisition, induction, and representation of knowledge. 
Psychological Review, 104(2), 211–240.

Lau, E. F., Phillips, C., & Poeppel, D. (2008). A cortical network for semantics: 
(de)Constructing the N400. Nature Reviews Neuroscience, 9(12), 920–933.

Lenci, A. (2018). Distributional models of word meaning. Annual review of Linguistics, 4, 
151–171.

Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3), 
1126–1177.

McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005). Semantic feature 
production norms for a large set of living and nonliving things. Behavior Research Methods, 
37(4), 547–559.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013b). Distributed 
representations of words and phrases and their compositionality. Advances in Neural 
Information Processing Systems, 26.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of word 
representations in vector space. arXiv Preprint. arXiv:1301.3781.

Mitchell, J., & Lapata, M. (2010). Composition in distributional models of semantics. 
Cognitive Science, 34(8), 1388–1429.

Mitchell, T. M., Shinkareva, S. V., Carlson, A., Chang, K.-M., Malave, V. L., Mason, R. 
A., & Just, M. A. (2008). Predicting human brain activity associated with the meanings 
of nouns. Science, 320(5880), 1191–1195.

Montague, R. (1970). Universal grammar. Theoria, 36(3), 373–398.
Muskens, R. (1996). Combining Montague semantics and discourse representation. 

Linguistics and Philosophy, 19(2), 143–186.
Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic 

response to sound: A review and an analysis of the component structure. 
Psychophysiology, 24(4), 375–425.

Nouwen, R., Brasoveanu, A., van Eijck, J., & Visser, A. (2022). Dynamic Semantics. In E. 
N. Zalta, & U. Nodelman (Eds.). The Stanford Encyclopedia of Philosophy. Metaphysics 
Research Lab, Stanford University Fall 2022 ed.

Padó, S., & Lapata, M. (2007). Dependency-based construction of semantic space models. 
Computational Linguistics, 33(2), 161–199.

Partee, B. H. (1995). Lexical semantics and compositionality. In L. Gleitman, M. Liberman, & 
D. N. Osherson (Eds.). An invitation to cognitive science, volume 1: Language (pp. 311–360). 
(2nd ed.). Cambridge, MA: The MIT Press.

Two models of meaning                                                                                        35 

http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref49
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref49
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref50
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref50
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref51
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref51
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref52
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref52
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref52
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref53
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref53
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref54
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref54
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref55
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref55
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref55
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref56
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref56
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref56
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref57
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref57
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref58
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref58
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref59
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref59
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref60
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref60
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref60
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref61
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref61
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref61
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref62
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref62
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref63
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref63
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref63
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref64
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref65
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref65
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref66
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref66
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref66
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref67
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref67
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref67
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref68
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref68
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref69
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref69
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref69


Pavlick, E. (2022). Semantic structure in deep learning. Annual Review of Linguistics, 8, 
447–471.

Pennington, J., Socher, R., & Manning, C.D. (2014). Glove: Global vectors for word 
representation. In: Proceedings of the 2014 conference on empirical methods in natural 
language processing (EMNLP), 1532–1543.

Pereira, F., Lou, B., Pritchett, B., Ritter, S., Gershman, S. J., Kanwisher, N., Botvinick, 
M., & Fedorenko, E. (2018). Toward a universal decoder of linguistic meaning from 
brain activation. Nature Communications, 9(1), 963.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. 
(2018). Deep contextualized word representations. In M. Walker, H. Ji, & A. Stent (Eds.). 
Proceedings of the 2018 conference of the North American chapter of the association for computational 
linguistics: Human language technologies, volume 1 (long papers) (pp. 2227–2237). New Orleans, 
Louisiana: Association for Computational Linguistics.

Poldrack, R. A. (2011). Inferring mental states from neuroimaging data: From reverse 
inference to large-scale decoding. Neuron, 72(5), 692–697.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language 
models are unsupervised multitask learners. OpenAI Accessed 15-11-2024.

Rohde, D. L. T., Gonnerman, L. M., & Plaut, D. C. (2009). An improved model of 
semantic similarity based on lexical co-occurrence. Cognitive Science, 1–33.

Schrimpf, M., Blank, I. A., Tuckute, G., Kauf, C., Hosseini, E. A., Kanwisher, N., 
Tenenbaum, J. B., & Fedorenko, E. (2021). The neural architecture of language: 
Integrative modeling converges on predictive processing. Proceedings of the National 
Academy of Sciences, 118(45), e2105646118.

Socher, R., Huval, B., Manning, C. D., & Ng, A. Y. (2012). Semantic compositionality 
through recursive matrix-vector spaces. Proceedings of the 2012 joint conference on empirical 
methods in natural language processing and computational natural language learning. Association 
for Computational Linguistics 1201–1211.

Tang, J., LeBel, A., Jain, S., & Huth, A. G. (2023). Semantic reconstruction of continuous 
language from non-invasive brain recordings. Nature Neuroscience, 26(5), 858–866.

Troyer, M., & Kutas, M. (2020a). Harry Potter and the chamber of what?: The impact of 
what individuals know on word processing during reading. Language, Cognition and 
Neuroscience, 35(5), 641–657.

Troyer, M., & Kutas, M. (2020b). To catch a snitch: Brain potentials reveal variability in the 
functional organization of (fictional) world knowledge during reading. Journal of Memory 
and Language, 113, 104111.

Turney, P. D., & Pantel, P. (2010). From frequency to meaning: Vector space models of 
semantics. Journal of Artificial Intelligence Research, 37, 141–188.

van Berkum, J. J. A. (2009). The ‘neuropragmatics’ of simple utterance comprehension: An 
ERP review. In U. Sauerland, & K. Yatsushiro (Eds.). Semantics and pragmatics: From 
experiment to theory (pp. 276–316). Basingstoke: Palgrave MacMillan.

Van Petten, C., & Luka, B. J. (2012). Prediction during language comprehension: Benefits, 
costs, and ERP components. International Journal of Psychophysiology, 83(2), 176–190.

Vecchi, E. M., Marelli, M., Zamparelli, R., & Baroni, M. (2017). Spicy adjectives and 
nominal donkeys: Capturing semantic deviance using compositionality in distributional 
spaces. Cognitive Science, 41(1), 102–136.

Venhuizen, N. J., Bos, J., Hendriks, P., & Brouwer, H. (2018). Discourse semantics with 
information structure. Journal of Semantics, 35(1), 127–169.

Venhuizen, N. J., & Brouwer, H. (2025). Referential retrieval and integration in language 
comprehension: An electrophysiological perspective. Psychological Review.

Venhuizen, N. J., Crocker, M. W., & Brouwer, H. (2019a). Expectation-based compre-
hension: Modeling the interaction of world knowledge and linguistic experience. 
Discourse Processes, 56(3), 229–255.

36                                                                     Noortje J. Venhuizen and Harm Brouwer 

http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref70
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref70
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref71
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref71
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref71
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref72
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref72
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref72
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref72
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref72
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref73
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref73
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref74
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref74
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref75
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref75
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref76
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref76
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref76
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref76
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref77
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref77
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref77
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref77
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref78
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref78
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref79
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref79
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref79
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref80
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref80
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref80
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref81
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref81
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref82
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref82
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref82
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref83
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref83
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref84
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref84
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref84
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref85
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref85
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref86
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref86
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref87
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref87
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref87


Venhuizen, N. J., Crocker, M. W., & Brouwer, H. (2019b). Semantic entropy in language 
comprehension. Entropy, 21(12), 1159.

Venhuizen, N. J., Hendriks, P., Crocker, M. W., & Brouwer, H. (2022). Distributional 
formal semantics. Information and Computation, 287, 104763 Special issue: Selected papers 
from WoLLIC 2019, the 26th workshop on logic, language, information and compu-
tation.

Wittgenstein, L. (1953). Philosophical investigations. Oxford: Basil Blackwell.
Zwaan, R. A., & Radvansky, G. A. (1998). Situation models in language comprehension 

and memory. Psychological Bulletin, 123(2), 162–185.

Two models of meaning                                                                                        37 

http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref88
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref88
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref89
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref89
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref89
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref89
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref90
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref91
http://refhub.elsevier.com/S0079-7421(25)00025-8/sbref91

	Two models of meaning: Revisiting the principle of compositionality from the neurocognition of language
	1 Introduction
	2 The linguistic perspective: How meaning can be modeled
	2.1 Lexical semantics: Conceptual knowledge and structure
	2.2 Compositional semantics: The meaning of multi-word utterances
	2.2.1 Dynamic semantics: Discourse structure and composition
	2.2.2 Expectation-based semantics: World knowledge-driven inferencing

	2.3 Two models of meaning?

	3 The neural perspective: How the brain represents meaning
	3.1 The retrieval-integration theory of online comprehension
	3.2 Neural meaning composition
	3.3 Decoding meaning representations from neural activity

	4 The principle of compositionality revisited
	4.1 Compositionality as a non-linear mapping between meaning spaces
	4.2 Compositionality is continuous
	4.3 Compositionality is expectation-based
	4.4 Compositionality is spatiotemporally extended

	5 Conclusions
	References




