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Natural language semantics has recently sought to combine the complementary strengths 
of formal and distributional approaches to meaning. However, given the fundamentally 
different ‘representational currency’ underlying these approaches—models of the world 
versus linguistic co-occurrence—their unification has proven extremely difficult. Here, 
we define Distributional Formal Semantics, which integrates distributionality into a 
formal semantic system on the level of formal models. This approach offers probabilistic, 
distributed meaning representations that are inherently compositional, and that naturally 
capture fundamental semantic notions such as quantification and entailment. Furthermore, 
we show how the probabilistic nature of these representations allows for probabilistic 
inference, and how the information-theoretic notion of “information” (measured in Entropy 
and Surprisal) naturally follows from it. Finally, we illustrate how meaning representations 
can be derived incrementally from linguistic input using a recurrent neural network model, 
and how the resultant incremental semantic construction procedure intuitively captures 
key semantic phenomena, including negation, presupposition, and anaphoricity.
© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Traditional formal approaches to natural language semantics capture the meaning of linguistic expressions in terms 
of their logical interpretation within abstract formal models. Central to these approaches—which range from first-order 
predicate logic [1] to event-based [2] and dynamic semantic approaches, such as Discourse Representation Theory [3]—are 
the notions of entailment and compositionality, which describe how meanings are related to each other (entailment) and 
how they can be combined to form complex meanings (compositionality). An alternative approach to natural language 
semantics, which has recently gained much interest, is distributional semantics. This approach characterizes the meaning of 
lexical items in a usage-based manner; namely as distributional vectors that capture the co-occurrences between words [4–
7]. The main advantage of such approaches is that the distributional representations inherently encode semantic similarity 
and relatedness between lexical items [8], and that they can be derived empirically from language data. It has, however, 
proven extremely difficult to incorporate the traditional semantic notions of entailment and compositionality within such a 
distributional semantic framework [9].

Indeed, while formal semantics focuses on proposition-level (sentence) meanings and distributional semantics focuses 
on the level of words, there has been considerable interest in bringing together the strengths of both approaches within a 
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single formalism. This has been attempted, for instance, by defining a notion of composition on top of the distributional 
representations, using vector operations [10], or by using more complex structures (e.g., matrices and tensors) in addition to 
vectors to represent lexical expressions [11–17]. Although this has been shown to produce interesting results when applied 
to adjective-noun modification [18], the approach has difficulties in representing the meaning of complex, multi-argument 
expressions (see [19,7] for reviews). Conversely, it has been attempted to incorporate distributional semantic representations 
within the logical forms that derive from formal models of meaning [20–22]. This approach aims to exploit the comple-
mentary strengths of formal and distributional semantics: formal mathematical machinery to account for sentence-level 
inference combined with a distributional account for lexical-level similarity and entailment [23]. While approaches such 
as these do indeed go a long way in extending formal semantics with a distributional component, they do so in a non-
integrative manner; that is, while distributional semantic representations can guide the construction of logical form (e.g., 
[21]), logical inference remains part and parcel of the formal semantic system itself. This is due to the fact that formal and 
distributional semantics operate on a fundamentally different ‘representational currency’: formal semantics defines propo-
sitional meaning in terms of models of the world, whereas distributional semantics defines lexical meaning in terms of 
linguistic context.

An alternative approach from cognitive science, however, extends the situation-state space framework from Golden and 
Rumelhart [24] into a vector space model that defines meaning in a distributed manner relative to states of the world [25]. 
Here, we generalize this approach to reveal its full logical capacity: we introduce a notion of distributionality into a formal 
semantic system by defining meaning in terms of co-occurrence across formal models. The resulting framework, called 
Distributional Formal Semantics (DFS; as introduced in [26]), defines a meaning space for describing propositional-level 
meaning in terms of co-occurrence across a set of logical models: individual models are treated as observations, or cues, 
for determining the truth conditions of logical expressions—analogous to how individual linguistic contexts are cues for 
determining lexical meaning in distributional semantics. Based on a set of propositions P , we define a set of logical models 
MP that together reflect the state of the world both truth-conditionally and probabilistically (i.e., reflecting the probabilistic 
structure of the world). The meaning of a proposition is defined as a vector within the meaning space constituted by MP , 
which reflects its truth or falsehood relative to each of the models in MP . The meaning vectors capture the (probabilistic) 
truth conditions of individual propositions indirectly by defining the meaning of individual propositions in relation to all 
other propositions; propositions that have related meanings will be true in many of the same models, and hence have 
similar meaning vectors. In other words, the meaning of a proposition is defined in terms of the propositions that it co-
occurs with—or, to paraphrase the distributional hypothesis formulated by Firth [27]: “You shall know a proposition by the 
company it keeps”.

In what follows, we will introduce the DFS framework and show how its meaning space offers compositional distributed 
representations that are inherently probabilistic and inferential (see also [26]), and allow for capturing the information-
theoretic notions of Entropy and Surprisal (cf. [28,29]). We show how propositional, as well as sub-propositional meanings 
are represented in the DFS framework as points in the meaning space, and how the incremental derivation of utterance 
meaning can be modeled as a trajectory through the meaning space. To this end, we employ a recurrent network model 
that is trained to map utterances onto their corresponding semantics on a word-by-word basis. We show how each word 
induces a contextualized transition from one point in meaning space to another, and critically extend upon previous work 
by modeling the effect of various core semantic phenomena—negation, presupposition, anaphoricity, and quantification—
on incremental semantic construction. Finally, we discuss how Distributional Formal Semantics offers a powerful synergy 
between formal and distributional approaches to meaning—which we argue to be complementary to the lexical semantic 
knowledge captured by ‘traditional’ distributional approaches—that allows for modeling natural language semantics from 
formal, empirical, and cognitive perspectives.

2. A framework for Distributional Formal Semantics

In Distributional Formal Semantics, meaning is defined relative to a (finite) set of formal models MP , in which each 
model is defined in terms of a set of propositions P . The propositions in P may be simple (zero-ary predicates) or com-
plex (predicates with multiple arguments). The models in MP are first-order models that can be represented as the set 
of propositions P ⊆ P that they satisfy. The set of models MP , which can theoretically be viewed as a set of possible 
worlds in the tradition of Carnap [30], constitutes a meaning space relative to which propositional meaning (as well as 
sub-propositional meaning; see below) can be expressed. An example of the meaning space is shown in Fig. 1; here, the 
rows represent models as sets of (truth values of) propositions and the columns represent propositional meaning vectors. 
The meaning vector �v(p) thus defines the meaning of proposition p ∈ P in terms of the models that satisfy p; i.e., �v(p) is 
the vector that assigns 1 to all M ∈MP such that p is satisfied in M , and 0 otherwise:

�p�MP = �v(p) s.t. for all i ∈ {1, . . . , |MP |} : �vi(p) = 1 iff Mi � p (1)

Since propositional meaning is defined directly at the level of model interpretation, propositions that are true in many 
of the same models will obtain similar meaning vectors. That is, in the meaning space that derives from MP , propositional 
meaning is defined in terms of co-occurrence between propositions—rather than in terms of linguistic co-occurrence, as in 
Distributional Semantics (e.g., [8]).
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meaning vectors for propositions in P︷ ︸︸ ︷

m
od

el
s
M

P
︷

︸︸
︷ p1 p2 p3 . . . pn

M1 1 0 0 . . . 1
M2 0 1 1 . . . 1
M3 1 1 0 . . . 0
. . . . . . . . . .
Mm 0 1 0 . . . 0

Fig. 1. Example of a meaning space based on a set of models MP = {M1 . . . Mm}, with meaning vectors for the set of propositions P = {p1 . . . pn}.

In order for the meaning vectors to correctly capture propositional meaning in terms of co-occurrence with other 
propositions, the meaning space should be structured in such a way that it reflects the structure of the world, both truth-
conditionally and probabilistically. That is, in order to fully encode entailment between two arbitrary propositions p and q
(p � q), the set of models MP should be truth-conditionally complete, such that: p � q (for any p, q ∈ P) iff all models 
in MP that satisfy p also satisfy q, and p � ¬q iff no model in MP that satisfies p also satisfies q. The meaning space 
thus inherently encodes truth-conditional constraints on propositional co-occurrence in terms of entailment; we will refer 
to such constraints as hard world knowledge constraints (see Table 2 in Section 3.1 below for examples of such hard world 
knowledge constraints). Moreover, probabilistic world knowledge is captured in the meaning space in terms of the fraction 
of the models in MP that satisfy a certain proposition—or combination of propositions—from P . Hence, in order for the 
meaning space to reflect the structure of the world, its constituent set of models MP should capture the hard and proba-
bilistic world knowledge constraints dictated by the world. We here present a top-down algorithm that induces a meaning 
space based on a high-level specification of the world (but see the discussion in Section 5.2 for an alternative, data-driven 
approach to defining a meaning space for DFS). Accordingly, we describe the formal properties of the resulting meaning 
space in terms of the compositionality of the meaning vectors, their probabilistic and inferential properties, and how it 
captures information-theoretic aspects of meaning (using the notions of Entropy and Surprisal).

2.1. Sampling the meaning space

Given a set of propositions P , the goal is to sample a set of models MP that reflects hard and probabilistic constraints of 
the world (theoretically, there are 2P possible models, but many of these are ruled out by hard constraints on propositional 
co-occurrence). That is, each individual model M ∈ MP should capture the truth-conditional constraints on co-occurrence 
between the propositions in P , and the full set of models MP should reflect any probabilistic constraints on the (co-
)occurrence of the propositions in P . Following [26], we employ an inference-driven, non-deterministic sampling algorithm 
that stochastically generates a set of models from a pre-defined set of propositions P and a set of (hard and probabilistic) 
constraints on these propositions.

The models M ∈MP that constitute the meaning space are defined as basic (first-order) models that can be represented 
as tuples 〈U M , V M〉 consisting of a universe of entities U M and an interpretation function V M that assigns (sets of) entities to 
the individual constants and predicates represented in P . The set of models MP is sampled by incrementally constructing 
individual models in a stochastic, inference-driven manner, based on the closed-world assumption (i.e., the assumption that 
individual models describe full states-of-affairs in terms of the truth and falsehood of the propositions in P). The universe 
U M of each M ∈ MP is defined as a set of entities U M = {e1 . . . en}, based on the set of individual constants (c1 . . . cn) 
that derive from P . The interpretation function V M , in turn, is initialized to map each constant onto a unique entity: 
V M(ci) = ei . Next, we incrementally construct the model 〈U M , V M〉 based on the set of propositions P , while taking into 
account the hard and probabilistic world knowledge constraints. Critically, since 〈U M , V M〉 only satisfies propositions that 
are assigned the truth value “true”, it does not distinguish between propositions that are assigned the truth value “false”, 
and those that are still undecided during incremental sampling. Therefore, in parallel to 〈U M , V M〉—which we call the Light 
World1 model (LM)—we construct a Dark World model DM = 〈U M , V ′

M〉 that satisfies all propositions that are assigned 
the truth value “false” (relative to LM). Indeed, this parallel model construction allows us to formulate not only the truth 
conditions of a particular expression using constraints on the Light World, but also its “falsehood conditions”, by evaluating 
the complement of the constraints relative to the Dark World. For instance, given a Light World constraint of the form 
∀x.R(x), any incrementally constructed Light World that does not satisfy all propositions of the form R(x) will violate this 
constraint, even if the truth values of these propositions are still undecided. By introducing a Dark World, the falsehood of 
the constraint ∀x.R(x) relative to the Light World can be proven by finding an entity in the Dark World for which R(x) holds 
(hence formalizing the following logical equivalence: ¬∀x.R(x) ⇔ ∃x.¬R(x)). In other words, violation of the constraint can 
be explicitly verified by checking whether the complement of the constraint (∃x.R(x)) is satisfied relative to the Dark World. 
Table 1 shows the full set of rules that define the complement of a formula ϕ .

Using the Light World (LM) and Dark World (DM) models, the sampling algorithm incrementally constructs a model 
based on the set of propositions P , a set of probabilistic constraints on P—i.e., the function Pr(p, M) that returns a prob-

1 Cf. The Legend of Zelda: A Link to the Past (Nintendo, 1992).
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Table 1
The complement ϕ of any well-formed formula ϕ is defined based on the following rulesa.

¬ϕ = ¬ϕ ϕ ⊕ ψ = (ϕ ∧ ψ) ∨ (¬ϕ ∧ ¬ψ) ∃x.ϕ = ∀x.ϕ
ϕ ∧ ψ = ϕ ∨ ψ ϕ → ψ = ¬ϕ ∧ ψ ∀x.ϕ = ∃x.ϕ
ϕ ∨ ψ = ϕ ∧ ψ ϕ ↔ ψ = (¬ϕ ∧ ψ) ∨ (ϕ ∧ ¬ψ) p = p

a Note that the complement of the implication was reported incorrectly in [26].

Algorithm 1 Sampling algorithm for deriving a DFS meaning space based on a set of propositions P , a set of probabilistic 
constraints {Pr(p, M)|p ∈ P}, and a set of hard world knowledge constraints C .

1. Let 〈LM, DM〉 be the tuple consisting of the initialized Light World model LM = 〈U M , LV M 〉 and the initialized Dark World model DM = 〈U M , D V M 〉;
2. Verify whether the state of affairs 〈LM, DM〉 is consistent: 〈LM, DM〉 � C iff for all constraints c ∈ C: either c is satisfied (LM � c) or c is not falsified 

(DM � c). If 〈LM, DM〉 � C, start again from step 1.
3. Select a random proposition p ∈P , such that LM � p and DM � p;
4. Let LMp be an extension of LM such that LMp � p, and let DMp be an extension of DM such that DMp � p;
5. Check the consistency of the state of affairs in which p is satisfied in the Light World (〈LMp, DM〉), and the state of affairs in which p is satisfied in 

the Dark World (〈LM, DMp〉).
• If 〈LMp , DM〉 � C and 〈LM, DMp〉 � C, the truth/falsehood of p is determined probabilistically: let LMp be the new Light World LM with probability 

Pr(p, LM); otherwise, let DMp be the new Dark World DM .
• If 〈LMp , DM〉 � C and 〈LM, DMp〉 � C, p is inferred to be true: let LMp be the new Light World LM .
• If 〈LMp , DM〉 � C and 〈LM, DMp〉 � C, p is inferred to be false: let DMp be the new Dark World DM .
• If 〈LMp , DM〉 � C and 〈LM, DMp〉 � C, the state of affairs is inconsistent: start over from step 1.

6. Repeat from step 2 until all propositions in P are satisfied in either LM or DM:
7. If 〈LM, DM〉 � C, the final LM is stored as a sampled model.

ability for proposition p based on model M (see Appendix A)—and a set of hard world knowledge constraints C . This 
sampling procedure is described in Algorithm 1 below (cf. [26]). This sampling algorithm uses the Light World and the Dark 
World to determine for a randomly selected proposition p whether its truth (or falsehood) violates any world knowledge 
constraints. If p is consistent with respect to both the Light World and the Dark World, it is determined probabilistically 
whether the proposition is “true” or “false” (with respect to the Light World). If, on the other hand, p is only consistent 
with respect to the Light World, it is inferred to be “true” with respect to the Light World. Conversely, if p is only consistent 
with respect to the Dark World, it is inferred to be “false” with respect to the Light World (i.e., p is satisfied by the Dark 
World). Finally, if p is neither consistent with respect to the Light World nor with respect to the Dark World, the current 
model is discarded. This state of affairs may arise from an interaction between individual hard world knowledge constraints, 
e.g., when adding p to the Light World violates one constraint and adding p to the Dark World satisfies the complement of 
another. This sampling procedure is repeated until the truth or falsehood of each proposition p ∈ P is determined. The final 
Light World model 〈U M , LV M〉 will be added to the sampled set of models MP . The full sampling algorithm described here 
is implemented as part of the software package dfs-tools.2

2.2. Compositionality in DFS

The meaning vectors from the DFS meaning space are fully compositional at the propositional level. Since the meaning 
vector �v(p) of a proposition p ∈ P is defined in terms of whether or not it is satisfied by each of the models M ∈ MP , its 
negation can be defined straightforwardly as the complement of �v(p), i.e., the vector that assigns 1 to all M ∈ MP such 
that p is not satisfied in M , and 0 otherwise:

�¬p�MP = �v(¬p) s.t. for all i ∈ {1, . . . , |MP |} : �vi(¬p) = 1 iff Mi � p (2)

Similarly, the meaning of the conjunction p ∧ q, for p, q ∈P , is defined as the meaning vector �v(p ∧ q) that assigns 1 to 
all M ∈MP that satisfy both p and q, and 0 otherwise:

�p ∧ q�MP = �v(p ∧ q) s.t. for all i ∈ {1, . . . , |MP |} : �vi(p ∧ q) = 1 iff Mi � p and Mi � q (3)

Using the negation and conjunction operators, the meaning of any other logical combination of propositions in the 
semantic space can be defined, thus allowing for meaning vectors representing expressions of arbitrary logical complexity. 
Moreover, these operations also allow for the definition of quantification. Since P fully describes the set of propositions 
expressed in MP , the (combined) universe of MP (UMP = {u1, . . . , un}) directly derives from P . Universal and existential 
quantification, then, can be formalized by replacing the quantifier variable in the sub-formula with each of the entities in 
UMP , and combining them using conjunction and disjunction, respectively:

�∀xϕ�MP = �v(∀xϕ) s.t. for all i ∈ {1, . . . , |MP |} : �vi(∀xϕ) = 1 iff Mi � ϕ[x\u1] ∧ . . . ∧ ϕ[x\un] (4)

2
dfs-tools is available as open source under the Apache Licence, Version 2.0: https://github .com /hbrouwer /dfs -tools.
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�∃xϕ�MP = �v(∃xϕ) s.t. for all i ∈ {1, . . . , |MP |} : �vi(∃xϕ) = 1 iff Mi � ϕ[x\u1] ∨ . . . ∨ ϕ[x\un] (5)

where ϕ[x\u] is defined as the formula ϕ with every instance of x replaced by u. This formalization of quantification 
in the meaning space constituted by MP is directly in line with traditional formalizations of quantification, in which 
an assignment function is used to substitute variables for elements from the model universe. The difference is that here 
variables are replaced by elements from the combined universe of all models in MP . As a result, quantification is strictly 
defined with respect to the full set of models, rather than individual models: for instance, ∀xR(x) is only true in those 
models that satisfy R(x) for the full set of entities in UMP , not just for those entities that occur in the current model. This 
ensures that entailments are preserved across models, e.g., ∀x.R(x) entails R(e) for all entities e across all models in MP .

2.3. Probability and inference in DFS

Propositional meaning vectors in the DFS meaning space are defined in terms of the models that satisfy a proposition. As 
a result, the meaning vectors are inherently probabilistic; that is, a proposition that is satisfied by a large number of models 
has a high probability, and vice versa. Formally, this means that the probability of an individual proposition is determined 
by the fraction of models in MP that satisfy this proposition (following [26]):

P (p) = |{M ∈ MP | M � p}|
|MP | for p ∈ P (6)

Given the compositional operations defined above, this means that the probability of any logical combination of propositions 
can be defined; for instance, the conjunctive probability of two propositions p and q is defined as the fraction of models 
that satisfy both propositions p and q:

P (p ∧ q) = |{M ∈ MP | M � p and M � q}|
|MP | for p,q ∈ P (7)

These definitions define probabilities over propositional-level meanings that are represented within the DFS meaning 
space as binary meaning vectors—reflecting truth and falsehood with respect to the models in MP . Critically, however, 
the meaning space constituted by MP is continuous, which means that intermediate points in space—represented as real-
valued vectors—constitute valid (sub-propositional) meanings with respect to MP . Intuitively, each component i of a real-
valued meaning vector �v(a) can be interpreted using fuzzy logic as describing the ‘degree of truth’ of sub-propositional 
meaning a (e.g., representing a word or a sequence of words) relative to model Mi ∈ MP . In other words, real-valued 
vectors constitute meanings that cannot be directly expressed as combinations of propositions, but rather reflect a degree 
of uncertainty regarding the propositional-level meanings. More formally, based on the set of models MP , we can define 
the vector space R|MP | that contains all real-valued vectors within the dimensions of MP . This vector space consists of 
both binary meaning vectors (constituting propositional meanings) and real-valued vectors (constituting sub-propositional 
meanings), that all carry their own probability. To capture the probabilistic properties of the vectors from the vector space 
R|MP | , we extend the definitions for prior and conjunctive probabilities defined above (see Equations (6) and (7)) to 
account for real-valued vectors by calculating the average value of their components (following [31]). That is, given that 
the probability of propositions is defined in terms of the fraction of models that satisfy a proposition, the probability of 
a sub-propositional meaning—represented as a real-valued vector in which each component represents a fuzzy ‘degree of 
truth’—can be defined as the sum of its components divided by the number of models in MP :

P (a) = 1

|MP |
∑

i

�vi(a) for �v(a) ∈R|MP | (8)

Given the fuzzy logic interpretation of the real-valued components of meaning vectors, the conjunction of two (distinct) 
points in meaning space a and b can standardly be defined using point-wise vector multiplication [31]. Importantly, since 
multiplying a real-valued vector with itself does not necessarily result in the original vector (in other words, the operation is 
a continuous t-norm that is non-idempotent), we define the conjunctive probability of a point with itself as its prior prob-
ability: P (a ∧ a) = P (a). This ensures analogous behavior between the probabilities associated with propositional meanings 
(i.e., binary meaning vectors) and sub-propositional meanings (i.e., real-valued meaning vectors). The conjunctive probability 
of two arbitrary points in meaning space a and b (such that a �= b) is then defined as follows:

P (a ∧ b) = 1

|MP |
∑

i

�vi(a)�vi(b) for �v(a), �v(b) ∈R|MP | (9)

The definitions of prior and conjunctive probability given in Equations (8) and (9) extend the prior and conjunctive 
probabilities of propositions (Equations (6) and (7)) to real-valued meaning vectors in the vector space R|MP | . More specif-
ically, in the case of propositional meaning vectors, each model that satisfies a proposition p (or combination thereof) 
5
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contributes 1
|M| of probability mass to P (p). Similarly, in the case of real-valued meaning vectors, each model that satisfies 

sub-propositional meaning a in a fuzzy manner to degree d, contributes d
|M| of probability mass to P (a).

Given the definitions for prior and conjunctive probability, we can calculate the conditional probability of any—
propositional or sub-propositional—meaning a relative to any other—propositional or sub-propositional—meaning b in the 
meaning space:

P (a |b) = P (a ∧ b)

P (b)
(10)

Hence, the meaning of an arbitrary point in meaning space is inherently related—in terms of probabilistic co-occurrence—
to any other point in meaning space. As a result, the meaning vectors inherently encode logical dependencies between 
propositions, and combinations thereof. We can therefore employ the conditional probability between meaning vectors to 
formally define entailment and probabilistic inference within the meaning space (see also [32]). That is, meaning vector a
is entailed by meaning vector b (b � a) if the conditional probability P (a|b) equals 1 (i.e., if a and b reflect propositional 
meanings, this means that any model in MP that satisfies a also satisfies b). In order to quantify probabilistic inference of 
a given b, the prior probability of a needs to be taken into account: if the conditional probability P (a|b) is higher than the 
prior probability P (a), this means that a is positively inferred from b; conversely, if P (a|b) < P (a), a is negatively inferred 
from b. The following inference score (see [31]) quantifies this probabilistic inference on a range from +1 to −1.

inference(a,b) =
{ P (a |b)− P (a)

1 − P (a)
if P (a |b) > P (a)

P (a |b)− P (a)
P (a)

otherwise
(11)

An inference score of 1 indicates that meaning vector a is perfectly inferred from b (i.e., b entails a: b � a), an inference 
score of −1 indicates that the negation of a is perfectly inferred from b (b � ¬a), and any inference score in between these 
extremes reflects either positive (inference(a, b) > 0) or negative probabilistic inference (inference(a, b) < 0). It is important 
to note that the inference score itself does not define a probability: rather, it quantifies how much the truth of proposition 
b increases (or decreases) the probability of proposition a, relative to its prior probability. Hence, inference(a, b) = 0 means 
that the posterior probability P (a|b) is equal to the prior probability P (a); i.e., knowing b does not increase nor decrease 
the certainty in a.

As described above, (propositional) meaning in DFS is defined in terms of co-occurrence between propositions. Given 
that probabilities are defined for all points in meaning space, the inference score can be employed to describe the meaning 
of any real-valued vector �v(a) relative to any other vector, and, in particular, relative to any of the propositions p ∈ P
(inference(p, a), which quantifies how much proposition p is inferred from the meaning vector constituted by a). Hence, all 
points in the meaning space—be it those constituted by a binary meaning vector representing propositional meaning, or 
by a real-valued vector representing sub-propositional meaning—are inherently probabilistic as well as inherently related to 
each other, as can be quantified using the inference score.

2.4. Quantifying information in DFS

The probabilistic nature of the meaning vectors in DFS also allows us to characterize points in meaning space using 
information theory, as proposed by Shannon [33]. That is, information theory defines the concept of “information” from 
a communicative perspective with respect to the set of possible messages that can be used to determine a particular 
state-of-affairs (e.g., there are six possible messages to describe the outcome of a roll of a die). This is mathematically 
captured by the notion of Entropy, which quantifies the amount of uncertainty in a given (communicative) state; i.e., states 
of high uncertainty (high Entropy) on average require more messages (information, in bits) to be resolved than states of low 
uncertainty. In terms of the meaning space, each point in space is defined relative to the set of models MP that constitutes 
the meaning space. These models are specified as maximally consistent sets of propositions, reflecting fully specified states 
of affairs. Moreover, they can themselves be represented as vectors in meaning space, namely as the vector �v(M) that is 
defined as the conjunction of all propositions p ∈ P that are satisfied in M and the negations of all propositions p′ ∈ P
that are not satisfied in M . As a result, each point in meaning space inherently captures uncertainty about which fully 
specified state of affairs (i.e., which M ∈ MP ) is the case. That is, the closer a point is to a fully specified state of affairs, 
the less uncertainty it contains and hence the lower its information value. To quantify this notion of Entropy, [29] define 
a probability distribution over the set of meaning vectors that identify (unique) models in MP , i.e., VMP = {�v(M) | M ∈
{Mi |Mi ∈MP } and �vi(M) = 1iffMi = M}. For a point in space a, Entropy is defined as follows:

H(a) = −
∑

�v(M)∈VMP

P (�v(M) |a) log P (�v(M) |a) (12)

Following this definition, Entropy is zero if the point in meaning space defined by a identifies a unique model. If, on the 
other hand, all models are equally likely (i.e., the probability distribution over all possible models is uniform), Entropy will 
be maximal.
6
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Given this notion of Entropy, the logical and probabilistic properties of the DFS meaning space can be directly linked to 
the information-theoretic notion of uncertainty. Moreover, in the context of incremental language processing, a change in 
Entropy, typically a reduction, is taken to induce processing difficulty ([34]; see [29] for discussion). Similarly, processing 
effort has been linked to the notion of Surprisal, which quantifies the expectancy of words in context [35,36]; the less 
expected a word is in a given context, the higher its Surprisal, and hence the higher its processing effort. Following [28], 
Surprisal can be defined within the meaning space as reflecting the ‘expectedness’ of a transition between two points in 
meaning space, as triggered by an individual word or, more generally, a message. That is, for a given message ma,b that 
triggers a transition in meaning space from point a to b, Surprisal is high if point b is unexpected given point a, and low 
otherwise:

S(ma,b) = − log P (b |a) (13)

In other words, the logarithm of the conditional probability between meaning vectors b and a is inversely proportional 
to the processing effort induced by the transition triggered by ma,b . Indeed, this definition of Surprisal captures the “self-
information” [33] of a transition in meaning space, and Entropy reflects the average Surprisal over all possible transitions 
from one point to the next within the meaning space.

The information-theoretic notions of Entropy and Surprisal thus directly derive from the probabilistic nature of the DFS 
meaning representations. As such, they constitute a direct link between formal theories of entailment and inference, and 
theories of incremental natural language processing. That is, incremental processing in the meaning space entails navigating 
the meaning space on a word-by-word basis, such that each word induces a transition from one point to the next. These 
intermediate meaning states represent the meaning that is constructed up to a given word, and derive from the mapping of 
sentences onto (propositional) meaning vectors in the meaning space. Although this mapping can in theory be formalized 
using a semantic interpretation function, e.g., using set-theoretic machinery (see section 5 for a preliminary discussion), 
it can also be approximated directly using a neural network model. The neural network approach has the advantage that 
intermediate meaning states not only capture probabilities deriving from the structure of the meaning space, but also those 
deriving from the (probabilistic) structure of the language (see [28]). Below, we show how such a model of incremental 
semantic construction captures semantic phenomena such as negation, quantification, presupposition and anaphoricity, and 
how these phenomena affect the incremental processing dynamics of the model.

3. A model of incremental semantic construction

Building a recurrent neural network model of incremental meaning construction involves three core steps. First, we 
need to construct an appropriate meaning space that allows for capturing the semantic phenomena of interest, in this 
case negation, presupposition, anaphoricity, and quantification. Secondly, we need to define a language L that allows for 
describing (complex) situations in the meaning space, including expressions pertaining to the relevant phenomena. Finally, 
we need to train the neural network model to successfully map the utterances from L onto their corresponding semantics 
on a word-by-word basis. Below, we will discuss each of these steps in detail.

3.1. Constructing a meaning space

The first step is to construct set of models MP that defines a meaning space, based on a confined set of proposi-
tions P . For the current model, we construct a set of propositions using a set of predicates (enter(p,l), call(p,s), arrive(s), 
order(p,o), bring(s,o), pay(p)), which are combined with one or more of the following constants as arguments: persons 
(p ∈ {mike, will, elli, nancy}),3 places (l ∈ {bar, restaurant}), servers (s ∈ {barman, waiter}), and orders (ofood ∈ {fries,salad}; 
odrink ∈ {cola, water}). In addition, each of the constants is associated with the one-place predicate “referent(r)”, which can 
be interpreted as introducing the referent into the current discourse context (cf. the universe of discourse referents, as 
formalized in Discourse Representation Theory [3]).

Based on the resulting set of propositions P (|P| = 51), a meaning space was constructed by sampling a set of 10K 
models MP (using the sampling algorithm described in Section 2.1, as implemented in dfs-tools), while taking into ac-
count world knowledge in terms of hard and probabilistic constraints on propositional co-occurrence. Table 2 shows the 
hard constraints that are taken into account for sampling the meaning space; i.e., each model M ∈MP satisfies all of these 
constraints. The first constraint ensures that each individual model can be interpreted unambiguously in terms of the state 
of affairs it describes; since no explicit temporal information is encoded in the predicates, multiple ‘enter’ events for the 
same person would obscure the event structure of individual models and therefore affect entailment and inferencing. Con-
straints 2-5 pose general constraints on event co-occurrence. Note that due to the probabilistic sampling strategy, individual 
models satisfy only a subset of the propositions in P . Therefore, (non-)co-occurrences between individual propositions need 
to be defined explicitly and do not necessarily follow from combinations between other constraints (e.g., consider a model 

3 In the language L used in the current model (described in Section 3.2 below) “will” only occurs as a proper name, not as an auxiliary verb.
7
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Table 2
Hard constraints implemented in construction of the meaning space. Based on the set of propositions P (see text), the sampling 
algorithm samples a set of models MP , such that each model M ∈ MP satisfies all of these constraints.

No. Constraint Description

1 ∀x∀y∀z(enter(x, y) ∧ z �= y → ¬enter(x, z)) A person can only enter a single place.
2 ∀x∀y f /d∀z f /d(order(x, y) ∧ z �= y → ¬order(x, z)) A person can only order a single type of food/drink.
3 ∀x(¬(enter(x,bar) ∧ call(x,waiter))) Waiter cannot be called in bar.
4 ∀x(¬(enter(x, restaurant) ∧ call(x,bartender))) Bartender cannot be called in restaurant.
5 ∀x(¬(call(x,waiter) ∧ call(x,bartender))) A person can only call either waiter or bartender.
6 ∀x∀y((enter(x, y) ∧ pay(x)) → ∃z(order(x, z))) Entering and paying implies that something is ordered.
7 ∀x∀y((order(x, y) ∧ pay(x)) → ∃z(bring(z, y))) Ordering and paying implies that the order is brought.
8 ∀P∀x(P(x) → referent(x)) One-place predicates assert their argument.
9 ∀R∀x∀y(R(x, y) → (referent(x) ∧ referent(y))) Two-place predicates assert both arguments.

that only contains call and order predicates for a particular person: while it may satisfy constraints 1-4, it could violate con-
straint 5, and hence be invalid). In order to make sure individual models capture the canonical order of events, constraints 
6-7 encode dependencies between event occurrences. Finally, constraints 8-9 make sure that all arguments of a predicate 
are instantiated as referents. This will allow us to model presupposition and anaphoricity.

In addition to the hard constraints, the set of models MP as a whole reflects the probabilistic structure identified by 
a set of probabilistic constraints; see Appendix A for the full set of probabilistic constraints used for sampling the current 
meaning space. As follows from the sampling algorithm defined in Section 2.1, the sampling probability of a proposition 
p is defined relative to a model M (Pr(p, M)). The intuition behind this is that the probability of p may depend on the 
propositions that are satisfied relative to the model M that describes the state-of-affairs constructed so far. For instance, the 
sampling probability of person p ordering food, Pr(order(p, ofood), M), is low in case enter(p,bar) is satisfied in the current 
model M , while it is high in case enter(p,restaurant) is satisfied in M (if none of these constraints is satisfied in M , the 
proposition order(p, ofood) will be sampled using a base probability; see Appendix A). During sampling, the truth/falsehood 
of proposition p is determined based on the probability Pr(p, M) only in case the truth/falsehood of p cannot be inferred 
(based on the Light World and Dark World constructed so far; see Section 2.1). Hence, as the sampling probabilities may 
interact with the hard world knowledge constraints described in Table 2, the observed probabilities in the sampled meaning 
space may only indirectly reflect these sampling probabilities (as will be illustrated below).

To render it feasible to approximate the resultant meaning representations using a neural network model, we reduced the 
set of 10K models to a representative set of 150 models, which captures the probabilistic and truth-conditional structure 
of the world (using the model selection algorithm described in Appendix B). To illustrate the richness of the inferences 
contained in the resulting 150-dimensional meaning space, Fig. 2 shows the by-proposition inferences represented in this 
space for a subset of the propositions.4 In this figure, bright green values indicate maximal inference (i.e., entailment) of 
proposition a given proposition b, and bright red values indicate maximal inference of ¬a given proposition b. Every value in 
between reflects probabilistic inference. The green diagonal shows that each proposition entails itself. All other bright green 
and red values show (non-)co-occurrences between propositions that derive from the hard world knowledge constraints; 
for instance, order(mike,salad) entails referent(mike) and ¬order(mike,fries). Furthermore, the probabilistic inferences reflect 
the probabilistic world knowledge constraints described in Appendix A: for instance, the proposition a = order(mike,salad) is 
negatively inferred given b = enter(mike,bar) (inference(a, b) = −0.39) and positively inferred given b′ = enter(mike,restaurant)
(inference(a, b′) = 0.33), hence following the pattern induced by the probabilistic constraints (see constraints 5 and 6 in 
Table A.4). The inference values shown in Fig. 2 thus quantify the structure of the meaning space in terms of the hard 
and probabilistic co-occurrence constraints between individual propositions, thereby providing a suitable means to compare 
different meaning spaces. In fact, the model selection algorithm described in Appendix B exploits exactly this information 
to derive a reduced set of models that approximates the structure of the original meaning space.

3.2. Mapping utterances onto semantics

Based on the meaning space derived from the set of models MP , we define a language L based on a set of words 
(|W | = 30)5 and a grammar that combines these words into utterances (consisting of one or two sentences) that describe 
situations (in terms of combinations of propositions) within the meaning space. Table 3 shows the utterances generated by 
the language L and their associated semantics. Our grammar generates 278 unique utterances that describe 270 unique 
situations (due to the restricted nature of the meaning space, in which there exists only a single bar/restaurant, the definite-
ness of the determiner has no effect on the meaning of assertive sentences, thus resulting in overlapping semantics). The 
grammar generates three basic types of utterances: assertive simple sentences (e.g., “mike enters a restaurant”), negated 
simple sentences (e.g., “mike doesn’t enter a restaurant’) and assertive two-sentence utterances (e.g., “mike entered the bar 

4 Please refer to the electronic version for color figures.
5 The negated auxiliary verb “didn’t” is considered a single word.
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Fig. 2. By-proposition inferences in the meaning space for a subset of the propositions: all referent predicates together with all propositions pertaining to 
mike and those pertaining to the servers waiter and bartender. Bright green values indicate maximal inference of proposition a given proposition b (i.e., the 
entailment b � a), white values indicate that there is no inference of proposition a given b, and bright red values indicate maximal inference of ¬a given 
b (i.e., b � ¬a); all intermediate values reflect positive (light green) or negative (light red) probabilistic inferences. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

he ordered water”).6 In addition, all two-sentence utterances also occur as existentially quantified structures, which use 
the indefinite noun phrase “someone” (e.g., “someone entered the restaurant he ordered salad”). The semantics associated 
with assertive simple sentences are the individual propositions described by these sentences, and asserted two-sentence 
utterances describe conjunctions of propositions. The semantics of negated simple sentences, in turn, is defined as a con-
junction between the negated proposition and the associated presupposed referents (i.e., those introduced using a name or 
a definite determiner)—since each proposition entails all its arguments as referents in the meaning space (see Section 3.1), 
this is not explicitly encoded in the semantics of assertive sentences. Finally, the utterances starting with “someone” obtain 
an existentially quantified version of their associated semantics. Given the interpretation of existential quantification in DFS 
(see Section 2.2), this results in a disjunctive semantics over all persons (p ∈ {mike, will, elli, nancy}).

Note that we here do not define a lexical semantics for individual words. We use the compositional machinery from DFS 
to combine propositional meanings into the meanings of entire utterances. To capture sub-propositional meaning, we exploit 
the continuous nature of the meaning space. That is, the meaning of a sub-propositional expression is a real-valued vector 
that defines a point in the meaning space, which is positioned in between those points that instantiate the propositional 
meanings that the expression pertains to (e.g., the meaning of “mike” will be expressed as the meaning vector that is po-
sitioned in between the propositional meanings that pertain to mike; enter(mike,bar/restaurant), call(mike,bartender/waiter), 
etc.). In contrast to traditional formal approaches, the DFS approach does not define an operation (such as function com-
position) that simply combines the sub-propositional meanings of two subsequent expressions. Rather, sequences of words 
w1 . . . wn define a trajectory 〈�v1, . . . , �vn〉 through the meaning space, where each �vi represents the (sub-propositional) 
meaning induced by the sequence of words w1 . . . wi ; that is, each word wi induces a meaning in the context of the 
meaning assigned to its preceding words w1 . . . wi−1. Sub-propositional meaning thus derives from the incremental, context-
dependent mapping from word sequences onto (complex) propositional meanings. Below, we use a Simple Recurrent neural 
Network (SRN), as proposed by Elman [37], to approximate this mapping (see also [28,26]), and we show how the structure 

6 Two-sentence utterances are concatenated without punctuation because in this small language it will have no effect on meaning construction.
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Table 3
Utterances in language L and their associated semantics. Each line contains two variants of the utterance (i.e., asserted/negated or 
individual/quantified) with differential semantics, indicated using a and b). Variables identify persons (p ∈ {mike, will, elli, nancy}), 
places (l ∈ {bar, restaurant}), servers (s ∈ {barman, waiter}), and orders (o ∈ {cola, water, fries, salad}). Utterances only describe possible 
situations in the meaning space and pronouns only occur with suitable antecedents (‘∃xm/ f ’ restricts quantifier scope to male/female 
entities based on the pronoun).

Utterance[a/b] Semanticsa Semanticsb

p [entered/didn’t enter] a l enter(p,l) ¬(enter(p,l)) ∧ referent(p)
p [entered/didn’t enter] the l enter(p,l) ¬(enter(p,l)) ∧ referent(p) ∧ referent(l)
p [called/didn’t call] the s call(p,s) ¬(call(p,s)) ∧ referent(p) ∧ referent(s)
p [ordered/didn’t order] o order(p,o) ¬(order(p,o)) ∧ referent(p)
p [paid/didn’t pay] pay(p) ¬(pay(p)) ∧ referent(p)
the s [arrived/didn’t arrive] arrive(s) ¬(arrive(s)) ∧ referent(s)
the s [brought/didn’t bring] o bring(s,o) ¬(bring(s,o)) ∧ referent(s)
[p/someone] entered the l he/she ordered o enter(p,l) ∧ order(p,o) ∃xm/ f (enter(x,l) ∧ order(x,o))
[p/someone] entered the l he/she called the s

�
enter(p,l) ∧ call(p,s) ∃xm/ f (enter(x,l) ∧ call(x,s))

[p/someone] called the s he/she ordered o call(p,s) ∧ order(p,o) ∃xm/ f (call(x,s) ∧ order(x,o))
[p/someone] called the s he/she paid call(p,s) ∧ pay(p) ∃xm/ f (call(x,s) ∧ pay(x))
[p/someone] called the s he brought o call(p,s) ∧ bring(s,o) ∃x(call(x,s) ∧ bring(s,o))
[p/someone] called the s he arrived call(p,s) ∧ arrive(s) ∃x(call(x,s) ∧ arrive(s))

�
Only allowing possible combinations of Location–Server: bar–bartender/restaurant–waiter.

Fig. 3. Simple Recurrent neural Network (SRN). Boxes represent groups of artificial neurons, and solid arrows between boxes represent full projections 
between the neurons in a projecting and a receiving group. The dashed lines indicate that the context layer receives a copy of the activation pattern at 
the hidden layer at the previous time-step. See text for details.

of the meaning space and the language L combine in incremental processing. In particular, we examine how the processing 
of semantic phenomena such as negation, presupposition and anaphoricity emerges from this behavior.

3.3. Model specification

In order to derive a mapping from word sequences onto DFS meaning vectors, we train an SRN [37] to map sequences 
of words onto meaning vectors that represent propositional-level (i.e., utterance-final) meanings. The SRN consists of three 
groups of artificial logistic dot-product neurons: an input layer (30 units), a hidden layer (120), and an output layer (150) 
(see Fig. 3). Time in the model is discrete, and at each processing time-step t , activation flows from the input through 
the hidden layer to the output layer. In addition to the activation pattern at the input layer, the hidden layer also receives 
its own activation pattern at time-step t − 1 as input (effectuated through an additional context layer, which receives a 
copy of the activation pattern at the hidden layer prior to feedforward propagation). The hidden and the output layers 
both receive input from a bias unit (omitted in Fig. 3). We trained the model using bounded gradient descent [38] to map 
sequences of words onto a meaning vector representing the meaning of that utterance relative to the set of models MP . 
More specifically, at each time step t during training, the model is presented with an individual localist word meaning 
representation at its input layer (a vector with a single hot bit),7 reflecting the current word in the unfolding utterance, 
and an utterance-final meaning vector at its output layer. At each time step t , the model thus effectively combines a word 
meaning representation (from the input layer) with an abstract representation of its context (reflected in the context layer) 
into a meaning vector in the DFS meaning space (at the output layer). Since individual words in context may map onto 
different utterance-final meanings with varying frequencies, at each processing step t the model will produce a vector at its 

7 We use localist representations in order not to presuppose any word-internal structure. For more psychologically plausible representations, it is possible 
to employ representational schemes that encode phonetic, orthographic and/or semantic overlap between words.
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Fig. 4. Visualization of the meaning space into three dimensions (using multidimensional scaling—MDS; see also Footnote 8) for a subset of the 
atomic propositions (those pertaining to mike, excluding referent), and the conjunctive meanings enter(mike,bar) ∧ order(mike,cola) and enter(mike,bar) ∧
order(mike,fries). Grey points represent (simple or complex) propositional meaning vectors. Colored points and lines show the word-by-word navigational 
trajectory of the model for the word sequence “mike entered [the] bar [he] ordered” (words in brackets are left out) with the continuations “cola” and 
“fries”. The numbers represent Surprisal values for the utterance-final words.

output layer that represents an abstraction over all possible utterance-final meanings. Critically, since the model is trained 
to map words onto meaning vectors, this output vector itself constitutes a point in meaning space (see Section 3.4 below).

Prior to training, the model’s weights were randomly initialized within the range of (−.5, +.5). Each training item con-
sisted of an utterance (a sequence of words represented by localist representations) and a meaning vector representing the 
utterance-final meaning. For each training item, error was backpropagated after each word, using a zero error radius of 0.05, 
meaning that no error was backpropagated if the error on a unit fell within this radius. Weight gradients were accumulated 
over epochs consisting of all training items. At the end of each epoch, weights were updated using a learning rate coefficient 
of 0.2 and a momentum coefficient of 0.9. Training lasted for 10000 epochs, after which the mean squared error was 0.79. 
The overall performance of the model was assessed by calculating the cosine similarity between each utterance-final output 
vector and each target vector for all utterances in the training data. After training, all output vectors had the highest cosine 
similarity to their own target (mean = .99; sd = .01), indicating that the model successfully learned to map utterances onto 
their corresponding semantics. We moreover computed how well the intended target could be inferred from the output of 
the model: inference(�vtarget , �voutput ). The average inference score over the entire training set was 0.88, which means that 
after processing an utterance, the model almost perfectly infers the intended meaning of the utterance.

3.4. Semantic construction as meaning space navigation

The model is trained to map each word in an utterance to the utterance-final meaning. As a single word sequence may 
occur in multiple items with different utterance-final meanings, the model learns to navigate the meaning space on a word-
by-word basis. Fig. 4 provides a visualization of this navigation process. This figure is a three-dimensional representation of 
the 150-dimensional meaning space (for a subset of the atomic propositions and conjunctive meanings, derived using mul-
tidimensional scaling (MDS)).8 As this figure illustrates, meaning in DFS is defined in terms of co-occurrence; propositions 
that co-occur frequently in MP (e.g., enter(mike,restaurant) and call(mike,waiter)) are positioned relatively close to each 

8 Multidimensional scaling from 150 into 3 dimensions necessarily results in a significant loss of information. Therefore, distances between points in the 
meaning space shown in Fig. 4 should be interpreted with care. The grey points in this space correspond to propositional meaning vectors.
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Fig. 5. Word-by-word inferences for the utterance “someone called the waiter she ordered cola” for a subset of the referent predicates. Inferences are 
calculated based on the word-by-word output of the model (�v(wt )) and each of the propositions p, as follows: inference(�v(p), �v(wt )). Identical line 
markers reflect arguments of the same type (person/location/server).

other (remember that the waiter can only be called in the restaurant). The colored points show the model’s word-by-word 
output for the word sequence “mike entered the bar he ordered”, with the continuations “cola” and “fries”. The navigational 
trajectory (indicated by the thick solid lines) illustrates how the model assigns intermediate points in meaning space to 
sub-propositional expressions, and approximates the utterance-final meaning at the final word.

Crucially, as shown in detail by [28], this trajectory is determined by the probabilistic structure of the meaning space 
(“world knowledge”) as well as the utterances on which the model was trained (“linguistic experience”). That is, at the word 
“mike”, the model navigates to a point in meaning space that is in between the meanings of the propositions pertaining 
to mike. Each consecutive word then results in a transition to a new point in space that best approximates the meaning 
up to that word. At “bar”, the model positions itself close to the meaning vector representing enter(mike,bar), but does not 
fully commit to that meaning since its linguistic experience dictates that more input may come, which would result in 
a conjunctive utterance-final semantics. The effect of world knowledge, in turn, becomes clear at the final words. While 
the model was exposed to the utterances “mike entered the bar he ordered cola” and “mike entered the bar he ordered 
fries” equally often, the vector for “mike entered the bar he ordered” is closer to enter(mike,bar) ∧ order(mike,cola) than 
to enter(mike,bar) ∧ order(mike,fries), because the former is more probable in the model’s knowledge of the world. This 
expectation is reflected in the Surprisal values (see Equation (13)) associated with the utterance-final words: “fries” is more 
surprising (S(fries) = .96) than “cola” (S(cola) = .80). For an elaborate investigation of the influence of world knowledge and 
linguistic experience on meaning space navigation and Surprisal, see [28].

4. Inference during semantic construction

The model maps utterances onto their corresponding semantics by navigating the meaning space on a word-by-word 
basis. Each word triggers a transition in meaning space from a point representing the meaning prior to encountering that 
word to a point that integrates it into the interpretation. Crucially, each transition reflects both the linguistic experience 
of the model, as well as by the world knowledge captured by the structure of the meaning space, and each point directly 
allows for probabilistic inferences about what is ‘understood’. That is, we can use the inference score described in Section 2.3
(see Equation (11)) to quantify how much a proposition p is inferred after processing word wt : inference(�v(p), �v(wt)).

Fig. 5 shows the word-by-word inferences for the utterance “someone called the waiter she ordered cola” for a selection 
of the referent propositions. This figure shows that at each word in the sentence, the model adjusts its inferences based 
on its linguistic experience and the structure of the meaning space. For instance, at the word “waiter”, the model per-
fectly infers that referent(waiter) is the case (blue line), and at the same time reduces its inference for referent(bartender)
(orange line)—note that the hard world knowledge constraints do not exclude models that satisfy both referent(waiter) and 
referent(bartender). Furthermore, at the sentence-final word “cola”, the model strongly infers referent(restaurant) (green line), 
while showing a negative inference for referent(bar) (red line), despite the fact that neither of these referents were men-
tioned in the sentence. This is an effect of the structure of the meaning space, in which referent(waiter) often co-occurs 
with referent(restaurant), due to the hard world knowledge constraints (see Table 2). Finally, this figure shows that although 
the interpretation of the existentially quantified expression “someone” remains underspecified throughout the utterance, 
both the linguistic input (i.e., “she”) and the structure of the world (i.e., elli is more likely to order cola than nancy) guide 
the model toward an utterance-final interpretation in which referent(elli) (purple line) is inferred to a stronger degree than 
referent(nancy) (brown line).
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Fig. 6. Processing of negation. The barplots show the inference scores for a relevant set of propositions given the model’s output for the word sequences 
“will ordered” (left) and “will didnt order” (right)—critical words are shown in boldface.

Indeed, the ability to quantify the degree to which each given proposition is inferred at each point in the meaning space 
offers a powerful means to examine the dynamics of incremental semantic construction. In what follows, we will there-
fore harness probabilistic inference to investigate the construction dynamics of four key semantic phenomena: negation, 
presupposition, anaphoricity and quantification.

4.1. Negation

As described above, the meaning space inherently captures negation in terms of the models that do not satisfy (com-
binations of) propositions. This implies that each individual model in MP is interpreted as a full description of a state of 
affairs (rather than a partial observation, as in [25]), in which truth and falsehood directly reflect the state of the world. 
The negation semantics resulting from this meaning space were employed as the target semantics for the negated sentences 
presented to the model (see Table 3). Fig. 6 shows the contrast between an assertive (left) and a negated word sequence 
(right) for a selected set of inferences.

Both word sequences can be continued by introducing one of the possible orders (cola, fries, salad, water). At the word 
“ordered” in the utterance “will ordered” (left), the model has inferred that referent(will) is the case (blue bar). Moreover, the 
expected continuations are reflected by positive inferences for each of the propositions describing will ordering something 
(note that the personal preference for water over cola is also reflected in these expectations). By contrast, the negated 
word sequence “will didnt order” does not induce any of these probabilistic inferences; that is, although referent(will) is 
still inferred to be the case (see Section 4.2 below), there are no (positive or negative) inferences about any of the order
propositions (small deviations from 0 are interpreted as noise resulting from the model’s navigation through meaning space). 
This can be explained by the fact that the order predicates are partially mutually exclusive (cola excludes water, and salad
excludes fries), and therefore all models M ∈MP satisfy the negation of at least two of the order predicates. As a result, all 
models satisfy “will didnt order’, which means that all inferences approximate 0 (as the score inference(a,b) quantifies the 
inference of a above and beyond its prior). Hence, negation—as part of the language presented to the model during training, 
as well as deriving from the structure of the meaning space—directly affects incremental semantic construction in terms of 
the online expectations represented in the model.

4.2. Presupposition

In order to capture (existential) presuppositions, the meaning space was constructed in such a way that all individual 
constants instantiated in a single model M ∈ MP were explicitly introduced using the referent predicate (similar to the 
instantiation of a universe of discourse referents in Discourse Representation Theory [3]; see also [39]). In the mapping of 
utterances onto semantics, these ‘existential’ predicates were explicitly incorporated to account for the imbalance between 
definite and indefinite noun phrases with regard to negation: whereas definite descriptions trigger existence presupposi-
tions that ‘project’ from the scope of the negation (in line with [40]), indefinite descriptions generally do not trigger such 
presuppositions.9

Fig. 7 shows how these manipulations manifest in the online comprehension behavior of the model. The two panels 
at the top show that as part of an assertive sentence, definite and indefinite noun phrases result in the same inferences: 
the sentences “elli entered a restaurant/ elli entered the restaurant” both result in strong positive inferences (entailments) 
for referent(elli) (blue), referent(restaurant) (orange) and enter(elli,restaurant) (green). When embedded in a negated sentence, 
however, the inferences start to diverge. After processing the sentence “elli didnt enter a restaurant” (bottom left panel), 
the model infers that referent(elli) is the case and enter(elli,restaurant) is not the case. Critically, referent(restaurant) is also 
negatively inferred, indicating that the model finds itself in a state in meaning space in which restaurant is unlikely to be a 
referent (since ¬enter(elli,restaurant) can co-occur with other propositions that induce referent(restaurant), this inference is 

9 We here do not consider the use of ‘specific indefinites’, which do elicit such presuppositions in certain contexts (see, e.g., [41,42]).
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Fig. 7. Processing of presupposition. The barplots show the inference scores for a relevant set of propositions given the model’s output for the utterances “elli 
entered/didnt enter a restaurant” (top/bottom left) and “elli entered/didnt enter the restaurant” (top/bottom right)—critical words are shown in boldface.

Fig. 8. Processing of anaphora. The barplots show the inference scores for a relevant set of propositions given the model’s output for the word sequence 
“mike called the bartender he” (left) and the continuations “mike called the bartender he arrived” (middle) and “mike called the bartender he paid” 
(right)—critical words are shown in boldface.

not maximally negative). The sentence “elli didnt enter the restaurant” (bottom right panel), on the other hand, does show 
a strong positive inference for referent(restaurant), while at the same time inferring ¬enter(elli,restaurant). This shows that 
the model is able to interpret presuppositions in context and to adjust its inferences accordingly.

4.3. Anaphoricity

The model was not explicitly trained to resolve the anaphoric dependencies of anaphoric expressions. Instead, anaphoric 
expressions (pronouns) were presented to the model as part of two-sentence utterances, which were associated with the 
appropriate (discourse-final) semantics. Crucially, pronouns were used to refer to both persons and servers (the latter always 
using the pronoun “he”), but their anaphoric antecedent was always disambiguated by either the prior context or the 
following sentence.

Fig. 8 shows an example of referential ambiguity of the pronoun. When processing the word “he” after the sentence 
“mike called the bartender” (left panel), the model shows moderately positive inferences for the propositions associ-
ated with possible continuations: both arrive(bartender) (orange) and pay(mike) (green) are positively inferred. Despite 
the fact that both continuations are equally likely based on the model’s linguistic experience, arrive(bartender) is in-
ferred to a slightly larger degree, which can be ascribed to a difference in conditional probabilities in the meaning 
space (P (arrive(bartender) | call(mike,bartender)) = .62; P (pay(mike) | call(mike,bartender)) = .46).10 When the model en-
counters the utterance-final word “arrived” (middle panel), the meaning is disambiguated to the vector representing 
call(mike,bartender) ∧ arrive(bartender) (because arrive(mike) is not a valid proposition in the meaning space). Instead, when 
the utterance is continued with “paid” (right panel), the model infers that pay(mike) is the case (again, pay(bartender) is not 
part of the meaning space), while still maintaining a slightly positive belief for arrive(bartender).

Hence, after processing the ambiguous pronoun “he”, the model shows positive inferences for both possible continua-
tions, with a slight preference for one over the other. In other words, the inferences reflect the expectations of the model in 
terms of the possible continuations. We can use the notion of Surprisal (see Equation (13)) to quantify these expectations. 
Indeed, the Surprisal estimates reflect that the continuation “arrived” is more expected than “paid”, because the former is 
less surprising (S(arrived) = .44) than the latter (S(paid) = .66), based on the probabilities of the meaning space and the 
language. In sum, the model entertains several possible interpretations upon encountering an ambiguous pronoun (some of 

10 The model selection procedure in some cases results in (slight) probabilistic inferences that were not explicitly part of the probabilistic constraints of 
the world; in particular, reducing the number of models in MP may amplify co-occurrence probabilities between propositions.
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Fig. 9. Processing of quantification. The barplots show the inference scores for a relevant set of propositions given the model’s output for the word sequence 
“someone entered the bar” (left) and the continuations “someone entered the bar he” (middle) and “someone entered the bar she” (right)—critical words 
are shown in boldface.

Fig. 10. Processing of quantification (continued). The barplots show the inference scores for a relevant set of propositions given the model’s output for the 
word sequence “someone entered the bar she ordered” (left) and the continuations “someone entered the bar she ordered cola” (middle) and “someone 
entered the bar she ordered water” (right)—critical words are shown in boldface.

which may be preferred over others), and incrementally uses the incoming linguistic information to resolve the pronoun 
and construct a coherent discourse-level meaning interpretation.

4.4. Quantification

Beyond assertive and negated sentences, the language L also contains existentially quantified (two-sentence) utterances 
in which a quantified noun phrase (“someone”) is used as the subject (see [26] for a similar model that also includes 
universally quantified utterances). The semantics for these utterances uses existential quantification in meaning space, which 
results in a disjunctive semantics over all possible subjects (i.e., the persons p ∈ {elli, mike, nancy, will}). From its linguistic 
experience, the model thus learns that “someone” can be used to refer to any of these subjects, without preferring any 
particular interpretation. Incremental navigation through meaning space, however, is driven by both the linguistic experience 
of the model as well as the structure of the meaning space. Given that the constituents of this disjunctive semantics may 
themselves differ in terms of their probability in meaning space, this will thus be reflected in the incremental inferences 
of quantified utterances. Moreover, since all quantified expressions presented to the model were part of a two-sentence 
utterance, the disjunctive semantics was in some cases limited to either male or female persons, depending on the pronoun 
used in the second sentence (“he/she”).

The interaction between quantification and anaphoric processing is illustrated in Fig. 9. The left-most panel shows a se-
lected set of relevant inferences for the sentence “someone entered the bar”. At the word “bar”, the model shows moderately 
positive inferences (∼ .5) for each of the predicates enter(p,bar). The inferences for enter(elli,bar) (blue) and enter(nancy,bar)
(green) are slightly higher than the others, which is explained by the fact that they have a higher prior probability in the 
meaning space (P (enter(elli,bar)) = 0.29; P (enter(nancy,bar)) = 0.25; P (enter(mike,bar)) = 0.23; P (enter(will,bar)) = 0.23). 
The second and third panel show how these inferences change as the sentence is continued using either a male (“he”) 
or a female pronoun (“she”). As expected, the gender of the pronoun determines which inferences are boosted; “he” re-
sults in higher inferences for enter(mike,bar) (orange) and enter(will,bar) (red), whereas “she” results in higher inferences 
for enter(elli,bar) and enter(nancy,bar). Moreover, the Surprisal estimates that derive from the model again reflect the mod-
el’s expectations about possible continuations: the fact that the propositions describing females have a slightly increased 
inference score already at the word “bar” results in reduced Surprisal for “she” (S(she) = 0.92) relative to “he” S(he) = 1.12).

To further illustrate how the model’s inferences incrementally develop in the context of quantification, Fig. 10 shows 
how propositional inferences regarding nancy and elli develop after processing the utterance “someone entered the bar she 
ordered”. At “ordered”, the model is in a state of indecision, in which enter(elli,bar) (blue) and enter(nancy,bar) (orange) 
are both positively inferred. Moreover, for elli there is no preference between ordering water (green) and ordering cola
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(red), whereas for nancy there seems to be a preference for cola (brown) as opposed to water (purple)—this is in line with 
the probabilistic constraints based on which the meaning space was created. When the utterance-final word “water” is 
processed (middle panel), the model maintains its disjunctive interpretation between enter(elli,bar) and enter(nancy,bar) and 
moreover boosts its inferences for order(elli,water) and order(nancy,water) to an equal degree (while reducing the inferences 
for ordering cola). Instead, when “cola” is encountered as utterance-final word (right panel), the model seems to show 
a slight preference for resolving its interpretation to nancy: enter(nancy,bar) is boosted to a slightly higher degree than 
enter(elli,bar), and order(nancy,cola) obtains a higher inference than order(elli,cola). This seems to suggest that after processing 
“cola”, the model is in a less uncertain state than after processing “water”, because there is a stronger preference for a 
particular interpretation of the pronoun. The uncertainty of a point in meaning space can be quantified using the notion 
of Entropy (see Equation (12)). Indeed, Entropy reveals that after “cola”, the model is in a slightly less uncertain state 
than after “water” (H(�v(water)) = 3.60; H(�v(cola)) = 3.51). Interestingly, the Surprisal estimates derived from the model 
seem to suggest that—in this particular example—confirming the expectation for order(nancy,cola) is slightly less surprising 
(S(cola) = 0.52) than disconfirming it (S(water) = 0.63). For an investigation of the interaction between meaning-level 
Entropy and Surprisal during incremental meaning space navigation, see [29].

5. Discussion

Distributional Formal Semantics defines propositional and sub-propositional meaning within the meaning space, which 
is constituted from a set of propositions P , and a set of formal models M. On the propositional level, meaning vectors rep-
resent truth and falsehood with respect to the set of models M, thereby inherently capturing co-occurrences between the 
propositions in P . We have shown how sub-propositional meaning within the meaning space derives from the incremen-
tal navigation through meaning space, as modeled using a recurrent neural network. Crucially, we showed how semantic 
phenomena such as negation, presupposition, anaphoricity and quantification can be captured as part of the semantic con-
struction procedure and how they affect meaning space navigation. Distributional Formal Semantics thus offers a powerful 
synergy between formal and distributional approaches that paves the way towards novel investigations into formal meaning 
representation and construction.

5.1. DFS and distributional semantics offer complementary meaning representations

Previous approaches that aimed to combine the strengths of formal and distributional semantics have tried to do so 
by either expanding distributional approaches to account for propositional-level inferences [13,15–17], or, conversely, by 
expanding formal approaches with a distributional component to account for lexical-level similarity [20–22]. By contrast, the 
DFS framework fundamentally integrates the distributional hypothesis into a formal semantic model, while maintaining the 
proposition-central perspective on meaning. That is, in terms of propositional-level meaning, the distributional hypothesis 
can be formulated as stating that propositions that occur in the same contexts—where contexts are models that represent 
states of the world, rather than linguistic contexts—represent similar meanings.

In DFS, the ‘representational currency’ is propositions, whereas in distributional semantics it is words. As a result, DFS 
allows us to model similarity at the propositional level; e.g., call(mike, waiter) is more similar to enter(mike, restaurant)
than to call(mike, bartender), since the former two propositions tend to co-occur in M, whereas call(mike, waiter) and 
call(mike, bartender) never co-occur. Distributional semantics, on the other hand, models lexical similarity in terms of the 
distributional hypothesis [27]; “waiter” is similar to “bartender” as they occur in similar linguistic contexts. Crucially, the 
DFS approach and distributional semantics thus capture different notions of semantic similarity: while the latter offers 
representations that inherently encode feature-based lexical similarity between words, the former provides representations 
instantiating truth-conditional similarity between propositions. Hence, we argue for a division of labor between proposition-
level and lexical distributional representations in which the former captures meaning in terms of the state of the world, 
and the latter captures the linguistic properties of lexical items (see also [43]). In other words, we take the DFS framework 
to be complementary to lexically-driven distributional semantics.

The complementary nature of these meaning representations is underlined by recent advances in the neurocognition 
of language, where evidence suggests that lexical retrieval (the mapping of words onto lexical semantics) and semantic 
integration (the integration of word meaning into the unfolding representation of propositional meaning) are two distinct 
processes involved in word-by-word sentence processing (see [44,45] for explicit neurocognitive models). More specifically, 
this neurocognitive perspective on comprehension suggests that there is no compositionality at the lexical level; that is, 
word forms in context are mapped into word meaning representations, which are subsequently integrated into a compo-
sitional phrasal-/utterance-level meaning representation. Indeed, this suggests that compositionality is only at play at the 
level of propositions, thus eschewing the need for compositionality at the lexical level.

5.2. Data-driven DFS

In DFS, the meaning of a proposition is captured by a meaning vector that defines for each model M ∈M that constitutes 
the meaning space whether it satisfies the proposition or not. The quality of the meaning representations therefore critically 
depends on finding a set of models M that truth-conditionally and probabilistically capture the structure of the world. In 
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Section 2 we described an algorithm to induce the meaning space from a high-level description of the structure of the 
world. An advantage of this approach is that it allows for defining the meaning space in a controlled manner, which is 
especially important when modeling experimental data. From a computational perspective, however, it would be interesting 
to investigate whether the meaning space—or the underlying world knowledge constraints—could be empirically derived 
from existing resources, such as knowledge bases and/or linguistic corpora.

There exists a wide variety of large-scale corpora that are annotated with sentence-level semantic information (for an 
overview, see [46]). For the purpose of generating a meaning space, the annotations should minimally reflect predicate-
argument structure (e.g., based on PropBank [47], or FrameNet [48]). Crucially, however, a well-formed meaning space 
captures all co-occurrence probabilities between the propositions that constitute the space. This means that the resource 
should not only capture co-occurrence information between subsets of proposition-level meanings (e.g., those that are part 
of a single discourse, as in the Groningen Meaning Bank [49], or appear in a single textual entailment pair, as in the 
Stanford Natural Language Inference corpus [50]), but rather across the entire set of proposition-level meanings; that is, 
individual models in the DFS meaning space describe the truth-values of all propositions in P , which would correspond 
to the union of the propositions occurring in all discourses, or across all textual entailment pairs in a corpus. Moreover, in 
order to maintain the distinction between probabilities deriving from the structure of the world, and those deriving from 
linguistic experience (see [28]), the co-occurrence probabilities represented in the meaning space should ideally derive from 
‘world-knowledge’-driven inferences that are not confounded by linguistic co-occurrence (although in many cases these will 
of course align).

An example of a resource that captures such ‘world knowledge’-driven co-occurrences is the DeScript corpus [51], which 
contains crowd-sourced event sequence descriptions (ESDs) that describe typical, everyday activities (also called ‘scripts’ 
[52]). In addition, the DeScript corpus contains a gold standard alignment for a subset of the crowd-sourced ESDs. Although 
the ESDs are themselves linguistic, they contain ‘world-knowledge’-driven information regarding the events and that are 
typically associated with a particular script (e.g., baking a cake or fixing a bicycle), as well as the order in which they 
typically occur. Sampling a meaning space from such a corpus entails identifying a set of propositions P (in this case, the 
events associated with a set of scripts), and collecting a large enough set of models M that describe combinations between 
these propositions; whereas using individual ESDs may result in data sparseness, it is possible to sample models based on 
the co-occurrence information derived from the individual ESDs. In future work, we plan to evaluate this approach, and 
experiment with data-driven meaning space induction from different resources.

5.3. Set-theoretic meaning construction in DFS

The DFS meaning space is constituted by proposition-level meanings that are represented using binary meaning vec-
tors. Since the meaning space itself is continuous, however, sub-propositional meaning can be captured using real-valued 
meaning vectors, which can be approximated using a Simple Recurrent neural Network. Within the neural network model, 
the meaning of a sub-propositional expression can be interpreted as the point in meaning space that is in between the 
(propositional) meaning vectors that represent the meanings of all possible continuations (see Fig. 4). In other words, the 
model navigates to a point in meaning space that is consistent with all interpretations that are captured by the current 
sub-propositional expression. An alternative approach to defining sub-propositional meaning is using sets of proposition-
level meaning vectors (cf. [11]). That is, in line with the generalized quantifier approach that represents the meaning of 
a quantified expression as a set of propositions, the meaning of a sub-propositional expression in the meaning space can 
be represented as the set of propositional meaning vectors consistent with its meaning. For instance, the meaning of the 
proper name “mike” will be captured by the set of meaning vectors that describe the propositions that pertain to mike: 
�mike�SM×P = {�v(p)|p ∈ {enter(mike,bar), enter(mike,restaurant), call(mike,bartender), . . .}}. Since each meaning vector �v(p)

can be interpreted as describing the set of models that satisfy p, this set-theoretic interpretation effectively describes sub-
propositional expressions as sets of sets of models.

Meaning construction, then, entails defining operations on sets of meaning vectors. In particular, the disjunction between 
two sets of meaning vectors can simply be defined as the union between these sets. Conjunction between sets of meaning 
vectors, in turn, means conjoining all elements of the first set of meaning vectors with all elements of the second set (based 
on the composition operation defined in Section 2.2). Since negating a set of meaning vectors implies that none of these 
is the case, the negation of a set of meaning vectors can be defined as the conjunctive closure over the negations of all 
individual meaning vectors. In order to capture the incrementality of meaning construction, a ‘merge’ operation (cf. merge 
between Discourse Representation Structures in DRT [3]) can be defined that asserts a set of propositional meaning vectors 
V into a context C—which is also defined as a set of meaning vectors—by selecting the subset of meaning vectors in V
that is consistent with context C . A full description of set-theoretic interpretation in DFS is beyond the scope of the current 
manuscript, but an initial formalization of these operations can be found as part of dfs-tools.

Crucially, sets of meaning vectors can be mapped back into the meaning space by finding the point in meaning space 
that is in between all elements of a given set. Formally, this means that the point in meaning space that corresponds to a 
set of meaning vectors is the (real-valued) vector that constitutes the arithmetic mean between these meaning vectors. In 
fact, given a completely balanced linguistic input, the recurrent neural network model is predicted to approximate exactly 
these intermediate points in space when capturing sub-propositional meaning. Indeed, it is the interaction between the 
structure of the meaning space and the structure of the linguistic experience that is difficult (if at all possible) to capture in 
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an ‘offline’ set-theoretic approach, while it is an inherent part of the way in which the neural network model maps language 
onto meaning.

5.4. DFS in cognitive models of language processing

DFS offers a powerful and flexible framework for modeling meaning and probabilistic inference in cognitive models of 
human language processing. For instance, a neural network model of language comprehension, similar to the one presented 
above, but employing meaning representations derived from an earlier formulation of the DFS framework (see [25]), has 
been used to successfully model the interaction between linguistic experience and world knowledge in comprehension [28]. 
Moreover, models employing such meaning representations have been shown to naturally capture inference and quantifi-
cation [31], and generalize to unseen sentences and semantics, in both comprehension [31] and production [53]. Here, we 
have extended these results by showing how they capture phenomena such as negation, presupposition, and anaphoricity. 
Finally, as discussed above, the information-theoretic notions of Surprisal and Entropy directly derive from DFS representa-
tions (see [28,29]), thereby providing representation-grounded linking hypotheses between processing behavior in the model 
and behavioral correlates of human processing difficulty. Crucially, this spectrum of linking hypotheses can be extended even 
further by employing DFS representations in a neurocomputational model of the electrophysiology of language comprehen-
sion to also obtain direct estimates of neurophysiological processing, in particular, of the N400 and P600 components of the 
Event-Related brain Potential (ERP) signal; see [45].

Taken together, we believe that the power and flexibility of DFS representations, the incremental construction of these 
representations in neural network models, and the representation-grounded linking hypotheses to behavioral and neuro-
physiological indices of processing difficulty, provide a comprehensive workbench for 1) formal semantic theory grounded 
in psycholinguistic evidence, 2) offering foundations for psycholinguistic theory by formally explicating representations and 
mechanisms, and 3) overall integration of formal semantic and psycholinguistic approaches to the study of language. As 
such, we believe DFS has the potential to shed light on the processing nature, as well as the representational and mecha-
nistic underpinnings thereof, of a vast spectrum of syntactic, semantic, and pragmatic phenomena.

6. Conclusion

We have proposed a framework for Distributional Formal Semantics (DFS), in which (sub-)propositional meaning is 
defined relative to a meaning space, which is constituted by a set of first-order models MP that is defined relative to 
a set of propositions P (such that each model M ∈MP can be defined in terms of the subset of propositions P ⊆P that it 
satisfies). Within this meaning space, propositional meaning is represented by the meaning vector �v(p) that represents the 
meaning of proposition p ∈ P in terms of the models that satisfy p; i.e., �v(p) is the vector that assigns 1 to all M ∈ MP
such that p is satisfied in M . The meaning vector �v(p) thus defines the meaning of p as a point in the meaning space. 
Within the meaning space, similar meanings (e.g., propositions with high co-occurrence) obtain similar meaning vectors 
that are positioned close to each other in space.

We have shown that the resultant distributed meaning representations are inherently compositional and probabilistic, 
and that they allow for capturing probabilistic inference and entailment. Moreover, we have shown how the information-
theoretic notions of Surprisal (the ‘self-information’ of a transition in meaning space) and Entropy (the average Surprisal 
over all possible transitions from one point to the next) derive from these representations. Furthermore, sub-propositional 
meanings, which cannot be directly expressed as (combinations of) propositions, can be represented as real-valued vectors, 
constituting points in the meaning space that also capture their own probability. To derive these sub-propositional represen-
tations, we instantiated a semantic interpretation function that maps utterances onto DFS meaning representations. Rather 
than formalizing such a function using set-theoretic machinery, we have employed a recurrent neural network model to 
incrementally construct the semantics for an utterance by navigating the meaning space on a word-by-word basis. Crucially, 
we have shown that this model of incremental semantic construction naturally captures semantic phenomena such as nega-
tion, quantification, presupposition and anaphoricity, and how these phenomena affect the incremental processing dynamics 
of the model, as quantified by probabilistic inference, Surprisal, and Entropy.

DFS integrates the strengths of formal semantics and distributional semantics by incorporating a distributional com-
ponent into a formal system. In DFS, like in formal semantics, the representational currency is propositions. In contrast 
to distributional semantics, which defines lexical meaning in terms of word co-occurrences, meaning in DFS is defined in 
terms of propositional co-occurrence, which reflects hard and probabilistic world knowledge constraints. As a result, we 
take DFS to be complimentary to distributional semantics; that is, where distributional semantics offers the representational 
machinery to capture lexical meaning, DFS offers utterance-level meaning representations. This distinction is in line with 
recent psycholinguistic theorizing, which suggests that compositionality may only be required at the utterance-level, thereby 
calling into question the need to directly incorporate aspects from formal semantics into distributional semantics.

In sum, DFS offers a powerful synthesis between formal and distributional approaches to semantics: distributed, 
utterance-level meaning representations that capture the similarity between (propositional) meanings, while strictly main-
taining the formal properties of compositionality and entailment. As such, we believe that the DFS framework—implemented 
by dfs-tools—paves the way towards novel investigations into the representation and construction of utterance-level mean-
ings, and the relation between the formal, empirical and cognitive study of semantics.
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Appendix A. Probabilistic constraints

The inference-based sampling algorithm employs probabilistic constraints to determine the truth/falsehood of proposi-
tions that cannot be inferred, which is the case if a proposition is consistent both with respect to the Light World and with 
respect to the Dark World (see Algorithm 1 in Section 2.1). The set of probabilistic constraints used for sampling our mean-
ing space is shown in Table A.4. During sampling, the truth of p is probabilistically determined relative to model M—the 
Light World—based on the probability described by Pr(p, M), given that M satisfies pre-defined conditions (see the third 
column). The sampling algorithm employs these probabilistic constraints in an ordered manner such that the first matching 
constraint determines the probability. This means that if the model M that describes the state-of-affairs sampled so far does 
not satisfy any of the conditions defined for proposition p, p is sampled according to the base sampling probability (see 
constraint 19).11 Note that a sampling probability of 1 (as in probabilistic constraints 14-17) means that whenever the truth 
of p is determined probabilistically, that is, if the truth/falsehood of p cannot be inferred, it will be assigned the truth value 
‘true’ (with respect to the Light World). Conversely, a sampling probability of 0 (as in probabilistic constraint 18) means that 
p will never be probabilistically determined to be ‘true’—i.e., p will only be true relative to the Light World due to direct 
inference based on the hard world knowledge constraints (as described in Section 3.1). Hence, due to the inference-based 
nature of the sampling algorithm, the observed probabilities in the sampled meaning space may only indirectly reflect the 
sampling probabilities shown in Table A.4 (see Section 3.1 for discussion).

Table A.4
Probabilistic constraints used for sampling of propositions for the meaning space. The first column identifies the order and the second column provides 
a description of each of the probabilistic constraints. The sampling probability (Pr(X, M)), shown in column four, describes the sampling probability of 
proposition X relative to model M , given that M satisfies the conditions presented in column three. Individual variables correspond to logical constants 
of a particular type: persons (p ∈ {mike, will, elli, nancy}), places (l ∈ {bar, restaurant}), servers (s ∈ {barman, waiter}), and orders (ofood ∈ {fries,salad}; odrink ∈
{cola, water}). The variables x and y are of the general type of entities, and X is of the type of propositions.

No. Probabilistic constraint Model conditions Sampling probability

1 Persons tend to enter the same place M � ∃x.enter(x,l) Pr(enter(p,l), M) = 0.9
2 Entering bar unlikely if person orders food M � ∃ofood.order(p, ofood) Pr(enter(p,bar), M) = 0.1
3 Entering bar likely if person orders drink M � ∃odrink.order(p, odrink) Pr(enter(p,bar), M) = 0.9
4 Entering rest. likely if person orders food M � ∃ofood.order(p, ofood) Pr(enter(p,restaurant), M) = 0.9
5 Low probability of ordering food in bar M � enter(p,bar) Pr(order(p,ofood), M) = 0.1
6 High probability of ordering food in restaurant M � enter(p,restaurant) Pr(order(p,ofood), M) = 0.9
7 Different persons unlikely to order the same order M � ∃x.x �= p ∧ order(x, o) Pr(order(p,o), M) = 0.1
8 Order unlikely to be brought if not ordered M � ¬∃x.order(x, o) Pr(bring(s,o), M) = 0.1
9 Low probability of paying if someone else pays in the 

same place
M � ∃x∃y.enter(p, x) ∧ y �=
p ∧ enter(y, x) ∧ pay(y)

Pr(pay(p), M) = 0.1

10 Personal preference (elli) M � � Pr(order(elli,cola), M) = 0.9
11 Personal preference (mike) M � � Pr(order(mike,cola), M) = 0.9
12 Personal preference (nancy) M � � Pr(order(nancy,water), M) = 0.9
13 Personal preference (will) M � � Pr(order(will,water), M) = 0.9
14 Bar presupposes bartender M � referent(bar) Pr(referent(bartender), M) = 1
15 Restaurant presupposes waiter M � referent(restaurant) Pr(referent(waiter), M) = 1
16 Bartender presupposes bar M � referent(bartender) Pr(referent(bar), M) = 1
17 Waiter presupposes restaurant M � referent(waiter) Pr(referent(restaurant), M) = 1
18 Base probability referents (infer only) M � � Pr(referent(x), M) = 0
19 Base probability propositions11 M � � Pr(X, M) = 0.6

Appendix B. Model selection algorithm

We employ a model selection algorithm to reduce the dimensionality of the meaning space (following [28]). This means 
that based on a given set of models MP , we define a new set of models M∗

P such that: (i) M∗
P ⊂MP ; (ii) M∗

P captures 

11 The base sampling probability for propositions (see constraint 19) is set to 0.6 instead of a coin flip (0.5) in order to increase propositional co-
occurrence across models.
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Algorithm 2 Model selection algorithm that reduces a set of models MP to a subset M∗
P of cardinality k, while preserving 

the structure of MP truth-conditionally and probabilistically.
1. Take a random proper subset of k models from MP , and call this M∗

P ;
2. Check if all propositional meaning vectors in M∗

P are informative (i.e., there are no vectors that only contain zeros), otherwise return to step (1);

3. Compute an inference vector �inf containing the inference score inference(a, b) for each combination of propositions a, b ∈ P for the original set of 
models ( �inf(MP )) and the reduced set of models ( �inf(M∗

P )).

4. Check if the reduced set of models encodes the same hard constraints as the original set of models (positive constraints: for all i, �inf(M∗
P )(i) = 1 iff

�inf(MP )(i) = 1; negative constraints: for all i, �inf(M∗
P )(i) = −1 iff �inf(MP )(i) = −1), otherwise return to step (1);

5. Compute the similarity between M∗
P and MP on the basis of the proposition-by-proposition inference scores in �inf(M∗

P ) and �inf(MP ) using 
Pearson’s correlation coefficient ρ( �inf(M∗

P ), �inf(MP ));
6. If M∗

P is the best approximation of MP so far (ρ > ρbest), store it;
7. Start from step (1) and run the next iteration;
8. If we have reached X iterations, return the best M∗

P found.

the same hard world knowledge constraints as MP ; and (iii) M∗
P approximates the probabilistic inferences derived from 

MP . Formally, we reduce the dimensionality of a meaning space by reducing the number of models in MP to k, such 
that k < |MP |. The procedure, shown in Algorithm 2, is repeated for X iterations to arrive at a set of models M∗

P (with 
|M∗

P | = k) that maximally reflects the knowledge encoded in the original space MP . For the present model, we selected 
150 models from the sampled set of 10K models (based on 50 iterations), resulting in a reduced meaning space with 
ρ( �inf(M∗

P ), �inf(MP )) = .91.
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