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 A B S T R A C T

Expectations about upcoming words play a central role in language comprehension, with expected words being 
processed more easily than less expected ones. Surprisal theory formalizes this relationship by positing that 
cognitive effort is proportional to a word’s negative log-probability in context, as determined by distributional, 
linguistic, and world knowledge constraints. The emergence of large language models (LLMs) demonstrating 
the capacity to compute richly contextualized surprisal estimates, has motivated their consideration as models 
of comprehension. We assess here the relationship of LLM surprisal with two key neural correlates of 
comprehension – the N400 and the P600 – which differ in sensitivity to semantic association and contextual 
expectancy. While prior work has focused on the N400, we propose that the P600 may offer a better index 
of surprisal, as it is unaffected by association while still patterning continuously with expectancy. Using 
regression-based ERPs (rERPs), we examine data from three German factorial studies to evaluate the extent 
to which LLM surprisal can account for ERP differences. Our results show that LLM surprisal captures neither 
component consistently. We find that it is contaminated by simple association, particularly in smaller LLMs. As 
a result, LLM surprisal can partially account for association-driven N400 effects, but not for the full attenuation 
of N400 effects. Correspondingly, this property of LLMs compromises their ability to model the P600, which 
is sensitive to expectancy but not to association.
. Introduction

Expectations regarding the next word play a central role in language 
omprehension, as they reflect how linguistic and world knowledge 
nteract with context to constrain how the linguistic signal is likely to 
nfold. As a consequence, listeners process expected words with greater 
ase than less expected ones. Empirical evidence for expectation-based 
rocessing dates back several decades. For instance, expected words 
ere found to be read more quickly (Ehrlich and Rayner, 1981) or to 
licit an attenuated N400 amplitude (Kutas and Hillyard, 1984) during 
eading. A general formalization of this relationship between expected-
ess and processing effort was introduced with surprisal theory (Hale, 
001; Levy, 2008), which posits that the cognitive effort required to 
rocess a word is proportional to its negative log-probability in context:
ifficulty ∝ surprisal(𝑤𝑡+1) = −𝑙𝑜𝑔2𝑃 (𝑤𝑡+1|𝑤1...𝑡) (1)

The true expectancy of a word should in principle reflect all relevant 
eterminants of what word can appear next – including distributional, 
inguistic, and world knowledge-based plausibility constraints – while 
egative log expectancy (true surprisal) should be proportional to 

∗ Corresponding author.
E-mail address: bkrieger@lst.uni-saarland.de (B. Krieger).

cognitive effort (Levy, 2008; Venhuizen et al., 2019). It follows from 
this formalization that words that are less expected will result in higher 
surprisal and will be more difficult to integrate into the mental repre-
sentation of the utterance, while expected words will require less effort. 
Importantly, the link between expectancy and cognitive effort in Eq.  (1) 
can inform our understanding about (a) which empirical measures best 
index true surprisal, and (b) which models best approximate both true 
surprisal and – if divergent – cognitive indices of surprisal. The latter 
may be particularly relevant in determining the extent to which models 
use mechanisms and representations similar to those underlying human 
comprehension. The present study examines critical evidence from the 
two most salient neural correlates of comprehension – the N400 and 
the P600 components of the EEG signal – to assess how well they index 
surprisal as operationalized by current large language models (LLMs).

The empirical support for surprisal theory is considerable. Since 
its introduction, numerous studies have found word predictability to 
be correlated with various indices of cognitive processing effort. This 
includes not only evidence from behavioral metrics such as self-paced 
reading and eye-tracking data (e.g., Brouwer et al., 2010; Demberg and 
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Keller, 2008; Mitchell et al., 2010, Fernandez Monsalve et al., 2012; Oh 
and Schuler, 2023a; Smith and Levy, 2008; Wilcox et al., 2020), but 
also measures from brain activity, such as EEG and fMRI (e.g., Frank 
et al., 2015; Frank and Willems, 2017; Michaelov et al., 2024; Shain 
et al., 2024). Moreover, the predictions of surprisal theory have been 
shown to robustly hold across multiple languages (Wilcox et al., 2023b) 
and to transfer to multiple linguistic levels (Ettinger et al., 2014; Hu 
et al., 2023; Malisz et al., 2018). In sum, there exists broad evidence 
in support of surprisal and consequently of the notion that language 
processing in the human brain is guided by probabilistic expectations.

Importantly, the link between various neurobehavioral indices of 
processing effort and word predictability as posited by surprisal theory 
is formulated at the computational level in Eq.  (1), which Marr (1982) 
specifies as what problem the system seeks to solve. This leaves open 
the algorithmic level, which Marr defines as how the computational 
problem is solved. Critically, any generative stochastic process that 
is able to estimate contextual word probabilities – also known as a
language model – can be considered an algorithmic level implementation 
of the computational theory that is able to estimate surprisal. Hence, 
surprisal acts as a ‘‘causal bottleneck’’ between different algorithmic 
language model implementations and observable processing phenom-
ena (Levy, 2008). When introduced by Hale (2001), surprisal was 
computed with an Earley parser (Earley, 1970; Stolcke, 1995) on a 
probabilistic context-free phrase-structure grammar (PCFG). Since then, 
numerous studies have operationalized surprisal using a variety of 
computational models, including PCFGs (e.g., Demberg and Keller, 
2008), n-grams (e.g., Smith and Levy, 2008), recurrent neural networks 
(RNNs; e.g., Aurnhammer and Frank, 2019) and, more recently, LLMs 
(e.g., Oh and Schuler, 2023a).

1.1. Large language models as models of human comprehension

Large language models (LLMs) are deep neural network models 
that predict the next word in an input sequence by generating a 
probability distribution over all possible candidate tokens in their 
vocabulary. Throughout training, their parameters are adjusted in order 
to minimize prediction error, which is often evaluated by computing 
perplexity, the exponentiated average negative log-likelihood per to-
ken (Meister and Cotterell, 2021). Thus, LLMs directly compute richly 
contextualized surprisal estimates. Their grounding in predictive pro-
cessing, as well as their ability to generate coherent and deceptively 
human-like text, has led to considerable interest in exploring the status 
of LLMs as cognitive models at the computational level (Contreras 
Kallens et al., 2023). Piantadosi (2023), for example, views the finding 
that they to some extent encode semantic and syntactic representations 
(e.g., Manning et al., 2020) as strong counter-evidence to traditional 
generative linguistic approaches (Chomsky, 1965), and proposes to 
treat LLMs as serious models of human cognition which allow to ‘‘de-
velop compelling theories of the interplay of structure and statistics’’ 
(p. 383).

Moreover, the internal representations of LLMs were successfully 
mapped to brain responses during natural language comprehension in 
a number of studies (e.g., Caucheteux and King, 2022; Caucheteux 
et al., 2023; Goldstein et al., 2022; Schrimpf et al., 2021) across 
several neuroimaging response measures, such as electrocorticography 
(ECoG), functional magnetic resonance imaging (fMRI) and magnetoen-
cephalography (MEG). The overall strong correlation between model 
representations and brain responses was interpreted as evidence that 
human language processing is based on predictive coding, to the extent 
that ‘‘predictive processing fundamentally shapes the language compre-
hension mechanisms in the human brain’’ (Schrimpf et al., 2021). Going 
even further, Goldstein et al. (2022) argue that both the brain and 
autoregressive transformer LLMs share certain mechanisms, specifically 
pre-onset word prediction, post-onset tracing of prediction error, and 
reliance on contextual embeddings. From a broader methodological 
perspective, Caucheteux et al. (2023) view their results as illustrating 
2 
‘‘how the synergy between neuroscience and artificial intelligence can 
unravel the computational bases of human cognition’’.

Together, these studies highlight the recent appeal of LLMs as mod-
els of human comprehension due to their impressive performance and 
correlation to human brain responses during language comprehension. 
Even though such strong claims are debated (see for example Katzir, 
2023, for a reply to Piantadosi, 2023), what is remarkable is that 
the performance of LLMs is solely grounded in the task of next-word 
prediction.1 Indeed, not only do LLMs – compared to previous compu-
tational models – generate surprisal estimates which provide a closer 
fit to neurobehavioral indices of expectancy-related processing effort 
(Merkx and Frank, 2021; Michaelov et al., 2021), they also yield hidden 
states that correlate well with brain activity during language compre-
hension (Schrimpf et al., 2021). These observations have motivated the 
investigation of whether similarities between LLMs and humans are not 
limited to the computational, but extend to the algorithmic level, for 
instance by instantiating predictive coding, in which an error signal 
arising from pre-onset predictions is traced back in order to update 
an internal probability distribution (Goldstein et al., 2022; Michaelov 
et al., 2024). In other words, LLMs and humans may not only be 
similar in what they predict, but also in how they predict. That is, if 
the representations and mechanisms underlying the prediction process 
in LLMs are sufficiently similar to those involved in prediction in the 
brain during language comprehension, then reducing perplexity on an 
appropriate training corpus may lead to surprisal estimates that better 
approximate predictive behaviors in humans.

Identifying the degree to which LLM surprisal approximates human 
responses and/or where it diverges qualitatively and quantitatively can 
offer insights about the extent to which they may implement a function 
– such as next word prediction – in an algorithmically similar manner. 
It is important to note, however, that many of the above studies 
are based on evidence from naturalistic language such as podcasts, 
novels or newspapers, i.e., language that has not been modified with 
any particular hypothesis in mind. While naturalistic data offers the 
advantage of observing responses to language in a natural setting, and 
potentially increases the generalizability of results (Frank et al., 2015), 
such datasets may not reveal how distinct properties of language affect 
processing differentially. Indeed, this observation underlies the rich 
history of controlled factorial experiments, in which participants are 
exposed to items in different conditions. As these conditions only vary 
with respect to specific factor levels, systematic differences in responses 
across participants and items can be attributed to the experimental ma-
nipulations. Such studies have been crucial to identifying how distinct 
neural correlates of processing effort, as measured using event-related 
potentials, are differentially sensitive to properties of a word other than 
just its overall contextual expectancy.

1.2. Neural correlates of surprisal

Event-related potentials (ERPs) offer a multidimensional window 
into language comprehension at a high temporal resolution, allowing 
for the investigation of the time course of its unfolding sub-processes. 
Since its discovery by Kutas and Hillyard (1980), the N400 has been 
shown to be one of the most robust neural markers indicating process-
ing effort related to how predictable a word is in a given context – the 
less predictable the word, the more negative the N400 response. This 
relationship was identified long before the introduction of surprisal 
theory and, in the context of ERP studies, the predictability of a word 
has often been operationalized as cloze probability – the proportion 
of participants who offered this word as a completion in a separate 
norming study (Taylor, 1953; see Kutas and Hillyard, 1984 for its first 
application in ERP research). While cloze probability offers a good 

1 We are excluding models that incorporate reinforcement learning by 
human feedback here.
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estimate of predictable words, it poorly captures the lower end of 
the probability spectrum, such that both implausible and plausible 
but relatively rare words typically yield a cloze probability of zero. 
This constitutes one reason why language model surprisal – as another 
operationalization of expectancy that may cover the full probability 
distribution more adequately – has become popular in recent years 
(for more operationalizations of expectancy and how well they fit to 
neurobehavioral data, see de Varda et al., 2023).

Frank et al. (2015) were among the first to use surprisal values 
from three different language models (PCFG, n-gram, RNN) to predict 
the amplitude of six different ERP components, including the N400. 
Naturalistic sentences of written English from the UCL corpus (Frank 
et al., 2013) were used as materials, and the authors found a strong 
relationship between surprisal and the N400. The same dataset was 
used in a number of further studies to test the fit of surprisal val-
ues collected from different types of language model architectures, 
furthermore focusing predominantly on the amplitude of the N400 
(e.g., Aurnhammer and Frank, 2019; de Varda et al., 2023; Merkx and 
Frank, 2021; Frank and Willems, 2017). More recently, N400 responses 
from controlled factorial experimental studies have also been modeled 
with LLM surprisal (Michaelov and Bergen, 2020; Michaelov et al., 
2021; Michaelov et al., 2023; Michaelov et al., 2024).

However, the N400 is also sensitive to a number of other lin-
guistic and non-linguistic stimulus properties beyond the contextually-
determined expectancy of a word (Kutas and Federmeier, 2011). One 
such property is the semantic association of a word to the preceding 
context, i.e., the degree of its semantic relatedness. In naturalistic 
stimuli, association and expectancy are often confounded in that the 
words that are likely to come next, will often also be associated with the 
context. Critically, however, association and expectancy are distinct; 
that is, a word that is highly unexpected to immediately follow, may 
nonetheless be strongly associated to the context. This contrast was di-
rectly investigated by Delogu et al. (2019), in an ERP study containing 
the following experimental conditions:

(Ex. 1) Assoc+Exp+ John entered the restaurant. Before long, he opened the menu...
Assoc+Exp− John left the restaurant. Before long, he opened the menu...
Assoc−Exp− John entered the apartment. Before long, he opened the menu...

The target word menu is expected in condition Assoc+Exp+, but 
unexpected in condition Assoc+Exp−, as verified by plausibility rat-
ings and cloze norming. Crucially, however, menu is equally asso-
ciated to the context in both conditions. No N400 difference was 
observed between these conditions, indicating expectancy does not 
necessarily modulate N400 response, a phenomenon which has been 
observed in multiple studies, perhaps most notably role reversal anoma-
lies (e.g. Hoeks et al., 2004; Kim and Osterhout, 2005; Kuperberg et al., 
2007; see Brouwer et al., 2012 for a review). Indeed, an N400 effect 
of expectancy was only observed when the unexpected target was also 
unassociated, as is the case in condition Assoc−Exp−.

Cases such as these, in which contextual association modulates the 
N400 to a greater extent than expectancy are generally challenging for 
surprisal – and thus language models – to explain: In order to capture 
the observed absence of an N400 effect, the model would need to assign 
a similar probability to the target word in conditions Assoc+Exp+ and 
Assoc+Exp−. Indeed, due to its sensitivity to association – as well as 
the observation that the N400 is generally insensitive to words that are 
syntactically unexpected (Gouvea et al., 2010) – it could therefore be 
debated whether the N400 should be considered a reliable index of true 
surprisal, as surprisal is formally defined as a measure of the likelihood 
of a word that can immediately follow a given context. Conversely, 
any operationalization of surprisal that captures this absence of an 
expectancy effect, must either have not learned the role of world/event-
knowledge constraints on expectations (see e.g., Kauf et al., 2023), or 
be influenced by association in a manner which is inconsistent with the 
goal of minimizing perplexity (see e.g., Cong et al., 2023; Michaelov 
and Bergen, 2022).
3 
Another salient ERP component that is sensitive to the context-
driven expectancy is the P600. This component is elicited when words 
are unexpected due to syntactic (see Gouvea et al., 2010 for a re-
view), semantic (see Bornkessel-Schlesewsky and Schlesewsky, 2008; 
Brouwer et al., 2012; Kuperberg et al., 2007 for reviews) or pragmatic 
constraints (see Hoeks and Brouwer, 2014 for a review). Indeed, in 
the Delogu et al. (2019) study above, a P600 effect was observed 
in both unexpected conditions compared to the expected condition, 
when P600 amplitude was corrected for its overlap with the N400 
(see Brouwer et al., 2021a; Delogu et al., 2021, 2025). Moreover, Aurn-
hammer et al. (2023) have recently shown that the P600 is sensitive to 
graded plausibility-driven expectancy, consistent with varying degrees 
of surprisal. Combined with the fact that the P600 is insensitive to asso-
ciation (Aurnhammer et al., 2021), these findings suggest that the P600 
may in fact be a better index of expectancy than the N400 (Brouwer 
et al., 2021b). Evidence supporting this hypothesis is, however, rather 
limited. Frank et al. (2015) did not find any effects of n-gram, RNN or 
PCFG surprisal on P600 amplitude (in a relatively early time window), 
but speculated that ‘‘more sophisticated systems are likely to be better 
capable at simulating cognitive processes’’ (p.9). Indeed, de Varda 
et al. (2023) did find LLM surprisal from different GPT models to be 
predictive of the P600 amplitude in the same dataset, while Xu et al. 
(2024) found LLM surprisal to be predictive of both the N400 and P600 
in the context of joke comprehension.

Taken together, the above findings motivate the investigation of 
which ERP component – the N400 or the P600 – is best indexed by LLM 
surprisal. Importantly, the experimental manipulations of the studies 
we evaluate elicited a partially orthogonal pattern of N400 and P600 
effects, such that if LLM surprisal is able to adequately model the 
N400, it cannot at the same also adequately capture the P600, and vice 
versa. More specifically, we pursue two objectives with this work. First, 
we aim to investigate N400 findings that appear challenging for LLM 
surprisal, that is, cases where association was shown to override the 
influence of expectancy, such that less expected targets did not elicit 
a stronger negativity. Second, we aim to test how well LLM surprisal 
predicts P600 modulations elicited by plausibility manipulations. We 
evaluate three German ERP studies that were specifically designed to 
disentangle the influences of association, plausibility and expectancy 
on the N400 and P600:

• Study 1 (Aurnhammer et al., 2021) crossed association with 
expectancy, revealing additive effects of both factors in the N400, 
but only an effect of expectancy in the P600. To the extent that 
LLM surprisal is unaffected by association, we hypothesize that it 
captures the expectancy effects in both time windows, but not the 
association effect in the N400.

• Study 2 (Delogu et al., 2019), discussed above, found that asso-
ciation can override expectancy in the N400, while both unex-
pected conditions elicited a P600 effect. Depending on whether 
LLM surprisal is sensitive to association, it may or may not predict 
N400 differences between the three conditions. Conversely, LLM 
surprisal should only be able to capture the P600 differences 
between the conditions if it is insensitive to association.

• Study 3 (Aurnhammer et al., 2023) used repetition priming of the 
target word to achieve strong contextual association in all three 
conditions, such that no N400 effects were observed. By contrast, 
the graded implausibility of the conditions elicited an increasing 
P600 response. If LLM surprisal reflects graded plausibility, and 
is insensitive to association, we expect it to capture the graded 
P600 response to plausibility. Conversely, to predict the absence 
of any N400 effects, the LLM must assign a similar probability to 
the target word in all conditions, despite their graded plausibility.
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2. Method

Surprisal values are collected for the target words of all studies using 
three German state-of-the-art transformer models of different training 
data size and model complexity. The primary motivation for this is 
simply to identify robustness across models, and in the discussion we 
also consider the extent to which model parameters affect fit. Following 
previous approaches (e.g., Michaelov et al., 2024), we assess how 
well LLM surprisal overall predicts mean amplitude across each time 
window in a linear mixed effects regression. While the original studies 
defined varying time intervals for the ERP components, we choose 
to uniformly operationalize the time windows, such that the N400 
ranges from 300–500 ms, and the P600 ranges from 600–1000 ms. 
Turning then to a more detailed analysis, we apply regression-based 
ERPs (rERPs; Smith and Kutas, 2015), in which we fit one simple linear 
regression model per subject, electrode and time sample, predicting the 
observed voltages with LLM surprisal. This approach allows us to assess 
both the quantitative fit of LLM surprisal to the original data across time 
and electrodes, and the qualitative fit with the effect structure of the 
conditions in the original studies.

2.1. LLM selection and surprisal computation

Large language models exist in many different variations with re-
gard to the specific details and complexity of their architecture, as 
well as to the amount and composition of textual data they have 
been trained on. We focus here on surprisal values computed with 
transformer-based models, which better predict ERP components com-
pared to other architectures such as recurrent neural networks (de 
Varda et al., 2023; Merkx and Frank, 2021; Michaelov et al., 2021). A 
key feature of the transformer architecture is its attention mechanism, 
enabling the model to selectively weigh the influence of tokens from 
the context when predicting the next token (Vaswani et al., 2017). 
Attention can be applied in both directions of the target word position, 
allowing for language models that make use of both the preceding 
and subsequent context during training (e.g., Devlin et al., 2019). 
As bidirectional attention appears psychologically implausible for the 
purpose of modeling incremental language processing, we only consider 
strictly unidirectional transformer models that deploy a masked variant 
of attention, allowing them to attend only to the preceding context.

It has been previously argued, that model perplexity is inversely 
correlated with the goodness of fit of surprisal values to human data, 
such that models with lower perplexity generate surprisal values that 
provide a better fit (Goodkind and Bicknell, 2018; Wilcox et al., 2020). 
This hypothesis theoretically puts more advanced transformer models 
at an advantage, as larger models typically achieve lower perplexity. 
Oh et al. (2024), by contrast, found surprisal values from larger models 
to underestimate reading times for rare words due to frequency effects, 
suggesting that LLMs become overly accurate in predicting rare words. 
How model complexity, training data size and composition interact in 
influencing the fit of surprisal values to ERP components is not yet 
clearly established. We therefore consider three LLMs that differ with 
respect to their number of trainable parameters and amount of training 
data. For the purpose of replicability, we use LLMs that are publicly 
available via the Hugging Face platform (Wolf et al., 2020) and publish 
our code.2

Concretely, we use LeoLM, a Llama-2 model which was initialized 
with weights resulting from pre-training on English and which was then 
continued to be trained on a large German web corpus (Plüster, 2023).3 
Moreover, we use two GPT-2 models, GerPT-2 large and GerPT-
2, that were also initialized with their respective English weights and 
were then trained on a different, smaller web corpus (Minixhofer, 

2 https://github.com/benedict-krieger/llm-surprisal-rerps
3 https://huggingface.co/LeoLM/leo-hessianai-13b
4 
Table 1
Overview of features of used LLMs.
 LeoLM GerPT-2 large GerPT-2 
 Parameters 13B 876M 176M  
 Vocabulary size 32,000 50,257 50,257  
 Context size 8192 1024 1024  
 Hidden layers 40 36 12  
 Hidden dimension 5120 1280 768  
 Attention heads 40 20 12  
 Training data size 595G 18G 18G  
 Training corpus OSCAR-2301a CC-100b CC-100b 
a https://huggingface.co/datasets/oscar-corpus/OSCAR-2301
b https://data.statmt.org/cc-100/

2020).4 That is, the GPT-2 models share the same training data and 
only differ with respect to their model complexity. For an overview 
of the specifications of the LLMs that were used, see Table  1. We 
note that a transfer from LLMs, which were pre-trained in English, to 
different languages is common practice due to economic and ecological 
considerations (see, e.g. Minixhofer et al., 2022).

The stimulus materials are presented to the LLMs up until the target 
word. The target word itself is not part of the surprisal computation; 
its probability is collected from the output layer at the preceding word, 
to which a negative logarithm is applied. The LLMs we use here rely 
on tokenization schemes and vocabulary representations based on sub-
words rather than words. Following previous work, when target words 
are tokenized into sub-words we sum the sub-word surprisal values to 
obtain a single surprisal value (see for example de Varda et al., 2023;Oh 
and Schuler, 2023b).5

2.2. LME analysis: Assessing overall fit of LLM surprisal to ERP amplitude

In previous studies, linear mixed effects models (LMEs) have been 
used to quantify the fit of surprisal values to ERP amplitude (e.g., Frank 
et al., 2015; Merkx and Frank, 2021; Michaelov et al., 2024). Usually, a 
null model is fitted, containing fixed effects that are known to have an 
overall influence on processing effort – such as word frequency, length 
or position within the sentence – and also random effects, accounting 
for variability specific to items, subjects and electrodes. Then, a model 
which additionally contains LLM surprisal as predictor is fitted and 
compared to the null model, for instance by computing Akaike’s In-
formation Criterion (AIC; Akaike, 1998) or conducting likelihood-ratio 
tests.

Concretely, we follow the approach of Michaelov et al. (2024). 
The authors used logarithmic word frequency and orthographic neigh-
borhood size as fixed effects, and also included a random intercept 
for the target word in all models. Their approach is warranted, as 
their study implemented a target word manipulation design. That is, 
the target word varied within as well as across items. However, the 
studies we evaluate in this work feature a context manipulation design, 
under which the target words only vary between items. Therefore, 
we do not include target word as a random intercept, and we do 
not include orthographic neighborhood size as a fixed effect. For the 
purpose of baseline comparison, we still include logarithmic word 
frequency and also target word position within the target sentence as 
fixed effects. Word frequencies are obtained with the WordFreq package 
in Python (Speer, 2022), which is based on the Exquisite Corpus.6 This 
corpus comprises different domains of text, which include Wikipedia, 
subtitles, news, books, web, and social media (Twitter and Reddit). 

4 https://huggingface.co/benjamin/gerpt2
5 We note that the commonly applied sub-word tokenization schemes may 

affect psycholinguistic modeling to a minor extent (see Oh et al., 2024; Nair 
and Resnik, 2023; Pimentel and Meister, 2024 for recent discussions).

6 https://github.com/LuminosoInsight/exquisite-corpus

https://github.com/benedict-krieger/llm-surprisal-rerps
https://huggingface.co/LeoLM/leo-hessianai-13b
https://huggingface.co/datasets/oscar-corpus/OSCAR-2301
https://data.statmt.org/cc-100/
https://huggingface.co/benjamin/gerpt2
https://github.com/LuminosoInsight/exquisite-corpus
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We include random intercepts for subject, item and electrode, but no 
random slopes (see Michaelov et al., 2024). For further comparison, we 
also fit a model with condition instead of LLM surprisal as fixed effect. 
In sum, each model contains the same random effects, fixed effects of 
word frequency and target word position, and then either condition 
or LLM surprisal from one of the three LLMs as an additional fixed 
effect. Except for condition, all fixed effects are standardized. For each 
of the time intervals we use the LMEs to predict mean N400 and P600 
amplitude on the trial level, recorded from the set of 26 electrodes 
which is shared in all studies. We then compute AIC values for all fitted 
models and normalize them by the null model AIC. This allows us to 
compare the overall predictive power of surprisal values from different 
LLMs relative to the effect of condition per study and time window. 
In order to assess statistical significance of the surprisal predictors, we 
run likelihood-ratio tests, comparing each of the LMEs which include 
suprisal to the null regression LME.

2.3. rERPs: Assessing LLM surprisal across time and electrodes

While the methodological approach outlined above is well-suited 
to quantify the fit of LLM surprisal to naturalistic data, or to compare 
different predictors to each other, we aim to complement it with a more 
fine-grained analysis. That is, we wish to assess whether LLM surprisal 
can model each of the N400 and P600 effects observed in the original 
studies. In order to do so, we apply the regression-based ERP method 
(rERPs; Smith and Kutas, 2015). For every subject at every electrode, 
timestamp, and trial, the observed voltage is replaced by the estimate 
of a simple linear regression model. This estimated voltage is a linear 
combination of stimulus properties of the particular trial, which may 
for example be operationalized by human ratings. In our approach, we 
are interested in re-estimating the voltages based on the isolated effect 
of LLM surprisal. Therefore, the regression model as specified below 
only contains surprisal from one of the three language models as single 
predictor (apart from the intercept): 
𝑦 = 𝛽0 + 𝛽1surprisal + 𝜀 (2)

Surprisal values are standardized (cf. Brouwer et al., 2021a). Both 
𝛽0, which denotes the intercept term, and the surprisal coefficient 𝛽1
are determined by the least-squares principle. Each trial belongs to 
a certain condition of an item, and thus has a particular surprisal 
value associated with it. The regression will find coefficients for 𝛽0
and 𝛽1 which minimize the residual term 𝜀 across all trials for a given 
combination of subject, electrode, and timestamp. The fitted regres-
sion models are then used to compute trial-level voltage estimates, 
resulting in a new dataset of estimated voltages, which has the same 
dimensionality as the dataset of observed voltages. Analogous to the 
traditional ERP analysis procedure, these forward estimates are then 
grouped by condition, and first averaged within subjects, resulting in 
one estimate per subject, electrode, time sample and condition. Then, 
the estimates are averaged once more across subjects, to obtain one 
mean estimate per electrode and time sample in each condition. It is 
important to note, that in this way the linear models do not have access 
to condition-coded predictors and the estimates are only averaged 
per condition retrospectively. The grand-average estimates can then 
be plotted, allowing us to visually inspect how closely the forward 
estimates of the linear models incorporating surprisal approximate the 
observed voltages – in each condition, at each electrode and at each 
latency. Moreover, this fit is described by the residual error term 𝜀 of 
the trial-level models, which can be averaged and visualized in the 
same way as described above, allowing to evaluate how far off the 
forward estimates are at a given latency and whether they are too 
negative or positive, relative to the observed voltages. The more these 
average residuals per condition approximate zero, the better the fit of 
the rERP analysis.

Following Aurnhammer et al. (2023), we assess the significance 
of the surprisal predictor by computing the same models as specified 
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in Eq.  (2), but across subjects, instead of within subjects. This allows 
us to obtain a single t- and p-value per electrode and time sample. 
Due to the problem of multiple comparisons, we correct the p-values 
for the inflated false discovery rate by applying the method proposed 
by Benjamini and Hochberg (1995). The p-values are corrected within 
the N400 and P600 time windows defined in Section 3, and at the 
nine central electrodes (F3, Fz, F4, C3, Cz, C4, P3, Pz, P4), of which 
we report Pz. Importantly, however, while these p-values only reflect 
the overall fit of predictors across all trials, they are not indicative 
of the qualitative fit to the effect structure, and should therefore be 
interpreted with caution. That is, predictors may reach significance, but 
not adequately replicate the effect structure. Conversely, a predictor 
that does not reach significance, may still contribute to modeling the 
effect structure.

2.4. rERPs: Correcting for component overlap

While the design of Study 2 will be described in more detail in 
Section 3, we note that the study became subject to a phenomenon for 
which we need to adjust our methodology: component overlap, that can 
occur when negative and positive components, that may temporally 
overlap to some degree, cancel each other out in the scalp-recorded 
signal (Brouwer and Crocker, 2017; Luck, 2005). In Study 2, the manip-
ulation of two factors led to the observed effect structure: association 
modulated the N400, and expectancy – operationalized through plausi-
bility – modulated the P600. Importantly, the decreased association in 
the Assoc− Exp− condition (see Ex. 1) elicited a negative response in 
the N400, which was so strong that it concealed a subsequent positivity 
elicited by the decreased plausibility in the observable waveform-based
component structure (see Brouwer et al., 2021a for methodological 
and Delogu et al., 2021, 2025 for empirical evidence).

One advantage of the rERP method is, that it permits the direct mod-
eling of the latent contribution of stimulus properties to the measured 
voltages, as described in Section 2.3. Brouwer et al. (2021a) showed 
how association and plausibility – which were inverted and stan-
dardized – linearly combine in re-estimating the originally observed 
voltages with the following model specification: 
𝑦 = 𝛽0 + 𝛽1plausibility + 𝛽2association + 𝜀 (3)

Computing forward estimates with the fitted model results in a 
replication of the originally observed effect structure of Study 2. Crit-
ically, using this fitted model, one can neutralize the influence of a 
predictor on these estimates, by setting this predictor to its mean, 
thereby keeping its influence on the estimates for each trial constant. 
Setting association to its mean, and thus isolating the influence of 
plausibility, revealed that the P600 amplitude was indeed modulated 
by plausibility in the latent component structure (Brouwer et al., 2021a; 
Delogu et al., 2021), showing an increased P600 amplitude for the 
implausible conditions relative to the plausible baseline. Thus, in order 
to enable a fair comparison for LLM surprisal, we follow the same 
approach and re-estimate the observed data, setting association to 
its mean, hence, isolating the influence of plausibility. In the P600 
window of Study 2, we evaluate LLM surprisal on the re-estimated 
data separately, both in the LME analysis, in which we predict overall 
fit in the time window, and in the rERP analysis, in which we predict 
differences between conditions across time and electrodes.

3. Results

We start by reporting the results from the linear mixed effects 
regression for all studies and both time windows. Then, we continue 
to present the results of our rERP analysis per study. First, we briefly 
introduce the original experimental design and findings – presenting 
the conditions, their mean ratings, an example item and the observed 
ERPs.
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Fig. 1. AICs of linear regressions predicting N400 and P600 amplitude, normalized by the AIC of the null regression.
Fig. 2. AICs of linear regressions predicting P600 amplitude on the data of Study 
2 which was corrected for component overlap. Note the difference in 𝑦-axis scale 
compared to Fig.  1.

The two factors, which were manipulated across studies, are con-
textual semantic association and expectancy. In Study 1 and Study 
2, association was operationalized via human ratings collected in a 
separate norming study. Participants rated the semantic relatedness 
between the target word and one or multiple context words on a 
Likert-scale ranging from 1 (weak) to 7 (strong). In Study 3, a strong 
association in all three conditions was achieved via repetition prim-
ing of the target word. Study 1 operationalized expectancy via cloze 
probability. That is, in a separate study, participants completed the 
stimuli which they saw up until, but excluding the determiner of the 
target word. Study 2 operationalized expectancy via cloze probability 
and plausibility. Cloze data was collected analogously to Study 1. 
Plausibility was operationalized by participants rating the plausibility 
of the stimuli up until, and including, the target word on a Likert-scale 
from 1 (weak) to 7 (strong). Study 3 operationalized expectancy via 
cloze probability and plausibility, which were determined analogously 
to Study 2. We re-label the conditions across studies, such that they 
reflect the manipulation of association (Assoc+/−) and expectancy 
(Exp+/−/−−), the latter originally being operationalized through cloze 
or plausibility.

After presenting the original studies, we inspect the distribution of 
raw surprisal values grouped by condition, which allows us to reason a 
priori which types of ERP differences they may be able to capture. We 
then present the rERP forward estimates of the linear regression models 
using LLM surprisal as predictor, as specified in Eq.  (2), and evaluate 
the qualitative fit of the re-estimated voltages to the observed voltages 
in the N400 and P600 window. Moreover, the average residual errors 
per condition of the forward estimates allow us to also assess this fit 
quantitatively. As a general observation, these residuals indicate that 
across studies and LLMs, ERP differences in both time windows are 
underestimated. For observed voltages, rERP forward estimates, and 
residuals, we present confidence intervals. We also report t- and p-
values, which were computed and corrected as described in Section 2.3, 
but as noted earlier these may not reflect the quality of fit with the 
observed effect structure, which is the focus of the rERP analysis. We 
restrict our report to electrode Pz which was most responsive to the 
N400 and P600 effects in the studies examined here.
6 
3.1. Assessing overall fit of LLM surprisal in both time windows

Fitting the LMEs per study and time window, as described in the 
Method section, leads to normalized AIC values, which are visualized 
in Fig.  1. Since the effect structure in the P600 window of Study 2 was 
affected by component overlap, Fig.  1 only displays the AICs for the 
N400 window in this study. For the P600 window, we re-estimate the 
observed voltages (as described earlier) and fit the LMEs with the same 
model specifications to the re-estimated data. The AIC values for this 
separate set of LMEs are displayed in Fig.  2.

Following Michaelov et al. (2024), we also assess the significance of 
the fixed effects by conducting likelihood-ratio tests: we compare each 
of the models, which contain either condition or surprisal from one of 
the LLMs, to the null model which only contains word frequency and 
target word position as fixed effects. All predictors are significant in 
both time windows and in all studies (all ps < 0.05), except for GerPT-
2 surprisal, which is not significant in the N400 time window of Study 
3: 𝜒2(1) = 0.17, p = 0.68.

Inspecting the AIC values, normalized by the null model, we observe 
that the LMEs including condition as fixed effect generally result in the 
lowest AICs, indicating the best fit to the data. An exception is the N400 
window in Study 3, in which all AICs are close to zero. This result is 
unsurprising, since in this study, no N400 effects were elicited. In the 
P600 time window, surprisal of the smallest LLM, GerPT-2, produces 
the lowest AICs. For Study 1 and Study 2, GerPT-2 large surprisal 
yields the lowest AICs in the N400 window and LeoLM surprisal yields 
the lowest AICs in the P600 window.

Crucially, although these results allow for an evaluation of which 
LLM produces surprisal values that best predict mean N400 and P600 
amplitude in each of the studies, this analysis alone does not allow 
us to assess why this is the case. While these results reveal that LLM 
surprisal is a significant predictor of mean ERP amplitude in almost 
all time windows across all studies, we will now turn to a more 
fine-grained rERP analysis, which shows that LLM surprisal not only 
underestimates ERP differences, but also in multiple cases fails to model 
them qualitatively.

3.2. Additive effects of association and expectancy in the N400

Study 1 crossed association with expectancy, finding that both can 
additively modulate the N400 amplitude, whereas only expectancy 
modulated P600 amplitude. Fig.  3 shows an example item, mean as-
sociation ratings and cloze probabilities across items, and the observed 
ERPs. Expectancy was manipulated through the selectional restrictions 
of the main verb: ‘‘sharpened ... the axe’’ in the high expectancy 
conditions Assoc+Exp+ and Assoc−Exp+ and ‘‘ate ... the axe’’ in the 
low expectancy conditions Assoc+Exp− and Assoc−Exp−. Association 
was manipulated through the lexical content of an intervening adver-
bial clause: ‘‘... before he the wood stacked, the axe’’ in the strongly 
associated conditions Assoc+Exp+ and Assoc+Exp− and ‘‘... before 
he the movie watched, the axe’’ in the weakly associated conditions 
Assoc−Exp+ and Assoc−Exp−.
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Fig. 3. Study 1 (40 participants), experimental conditions, mean human ratings across items, example item and observed ERPs.
In the N400 window, the stimuli elicited additive modulations from 
both expectancy and association. Keeping one of the two properties 
constant, a decrease in the other led to an increased negativity. Cru-
cially, in the P600 window a main effect of expectancy was observed, 
but the manipulation of association did not elicit a difference. Hence, 
in order to model the N400 response in the rERPs, LLM surprisal values 
need to reflect sensitivity to both association and expectancy, but – in 
contrast – they are required to be insensitive to association to capture 
the P600. Fig.  4 shows surprisal densities in the first, the rERP forward 
estimates in the second, residuals in the third, and t- and p-values in 
the last row.

N400. Inspecting the densities in the top row of Fig.  4, we can 
observe that surprisal values by all three LLMs appear to reflect sen-
sitivity to both association and expectancy. For LeoLM and GerPT-
2 large the contrast of unexpected versus expected (Assoc+Exp−
& Assoc−Exp− vs. Assoc+Exp+ & Assoc−Exp+) is more pronounced 
than the contrast of un-associated versus associated (Assoc−Exp− vs. 
Assoc+Exp−, Assoc−Exp+ vs. Assoc+Exp+). This is not the case for
GerPT-2 surprisal values. Consequently, we observe that the rERP 
forward estimates (Fig.  4, middle row) match the observed ERPs (Fig.  3) 
qualitatively well when entering LeoLM or GerPT-2 large surprisal 
into the regression models.

However, the surprisal values from LeoLM show only a small differ-
ence between unassociated versus associated in the expected conditions 
(Assoc−Exp+ vs. Assoc+Exp+). Therefore, unlike in the observed pat-
tern, hardly any N400 difference is predicted between these conditions 
in the rERPs. GerPT-2 surprisal values appear to reflect the contrast 
of association well, but the contrast of expectancy however only to 
a smaller extent when compared to the other LLMs. In the rERPs, 
surprisal values from this LLM only capture the overall ordering of 
differences, and provide the worst fit to the human data, which is also 
reflected in the largest residuals for GerPT-2 in both time windows.

P600. The contrast of the higher mean surprisal in the unexpected 
conditions relative to the lower mean surprisal in the expected condi-
tions – observable in the densities of LeoLM and GerPT-2 large – 
leads to rERP forward estimates that predict a difference of expectancy 
in this time window. This prediction matches the observed ERPs (Fig. 
3). However, the additional sensitivity to association, which is reflected 
in the surprisal values, leads to the prediction of a small P600 dif-
ference of association in the unexpected conditions (Assoc−Exp− vs. 
Assoc+Exp−). Entering surprisal values from GerPT-2 leads to rERPs 
that predict only minimal P600 differences between all conditions.

Summary. Surprisal by LeoLM and GerPT-2 large was a signif-
icant predictor throughout most time samples in both time windows, 
while surprisal by GerPT-2 was only significant in the N400 and 
initial time samples in the P600. In the N400 window, however, Study 
1 revealed additive influences of association and expectancy, i.e., de-
creasing either association or expectancy led to a stronger negativity 
when keeping the other property constant. This means modeling this 
response requires LLM surprisal values to reflect sensitivity to not only 
expectancy but association as well – which is what we observe in the 
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densities for all three LLMs. While resulting in rERP forward estimates 
that overall match the observed voltages qualitatively (LeoLM and
GerPT-2 large), this raises the question of how well LLMs estimate 
true surprisal, as true surprisal is insensitive to association. By contrast, 
P600 amplitude was shown here to be sensitive to expectancy but 
insensitive to association, as only an effect between the expected and 
unexpected conditions was observed. While in the rERPs this difference 
of expectancy is captured best with surprisal from the larger LLMs 
(LeoLM and GerPT-2 large), their additional sensitivity to associa-
tion leads to the prediction of a small difference of association in the 
unexpected conditions.

3.3. Association overrides expectancy in the N400 but not P600

Study 2 showed, that in the N400 time window, association and ex-
pectancy may not necessarily lead to additive effects. An example item 
of this study is presented in Fig.  5, alongside mean human judgments 
of association, plausibility and cloze across items. Central to the design 
is a manipulation of plausibility that is determined by world event 
knowledge: while entering a restaurant and then opening a menu is 
plausible (Assoc+Exp+), leaving a restaurant and then opening a menu 
is implausible and less expected (Assoc+Exp−), which also holds for 
entering an apartment and opening a menu (Assoc−Exp−). However, 
the conditions Assoc+Exp+ and Assoc+Exp− share the same strong con-
textual association between the prime noun restaurant and the target
menu, while apartment and menu in condition Assoc−Exp− are only 
weakly associated. Crucially, no N400 effect was observed between 
Assoc+Exp+ and Assoc+Exp−, despite the decreased plausibility and 
cloze probability of menu in Assoc+Exp−. Only Assoc−Exp−, being 
both implausible and weakly associated, elicited a stronger negativ-
ity relative to the other conditions. While the implausible condition 
Assoc+Exp− did not elicit an N400 effect relative to Assoc+Exp+, due 
to the strong contextual association in both conditions, a P600 effect 
was observed instead. Although Delogu et al. (2019) predicted a cen-
troparietal P600 effect in the other implausible condition Assoc−Exp−
relative to Assoc+Exp+ as well, such an effect was only observed at 
occipital electrodes, due to the sustained negativity which extended 
into the P600 window. When correcting for spatio-temporal overlap, 
the predicted P600 effect was observed (Brouwer et al., 2021a; Delogu 
et al., 2021).

If mean LLM surprisal differs sufficiently in conditions Assoc+Exp+
and Assoc+Exp−, it will predict a difference between these conditions 
in the rERPs, which does not match the observed data. If mean LLM 
surprisal does not differ between these conditions, no difference will 
be predicted in the rERPs. This would match the observed data but 
also show that LLM surprisal is sensitive to association and not purely 
estimating surprisal. In order to assess LLM surprisal in the P600 
window, a correction of component overlap is required first, showing a 
positivity in both conditions Assoc+Exp− and Assoc−Exp− relative to 
Assoc+Exp+. Predicting a positivity in Assoc+Exp− and Assoc−Exp−
relative to Assoc+Exp+ consequently requires mean surprisal to be 
higher in these conditions.
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Fig. 4. Study 1 surprisal densities (row 1), rERP forward estimates (row 2), rERP residuals (row 3), t-values and significant corrected p-values (row 4).

Fig. 5. Study 2 (26 Participants), experimental conditions, mean human ratings across items, example item and observed ERPs.
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Fig. 6. Study 2 surprisal densities (row 1), rERP forward estimates (row 2), rERP residuals (row 3), t-values and significant corrected p-values (row 4).
 

N400. As can be observed in the top row of Fig.  6, the LLMs 
diverge in how strongly their mean surprisal differs between conditions 
Assoc+Exp+ and Assoc+Exp−. There is a noticeable difference for
LeoLM, which is less pronounced for GerPT-2 large and almost 
unnoticeable for GerPT-2. Consequently, computing rERP forward 
estimates with LeoLM surprisal values leads to the prediction of a 
stronger negativity in the N400 in condition Assoc+Exp− relative to 
Assoc+Exp+, aligning with judgments of plausibility and expectancy, 
even though no N400 but rather a P600 effect was observed between 
these conditions (see Fig.  5). By contrast, entering GerPT-2 surprisal 
into the rERP analysis does not predict any difference between the 
conditions, which is in line with association and the observed ERPs.
GerPT-2 large appears to fall in between the other LLMs, that is, its 
surprisal values lead to only a minimally stronger negativity. In sum, 
9 
the largest LLM (LeoLM) produces surprisal values patterning with 
plausibility and expectancy – predicting a difference in Assoc+Exp−
relative to Assoc+Exp+ in the rERPs which was not observed in the 
ERP data – while using the smaller GPT-2 models (GerPT-2 large
and GerPT-2) leads to surprisal values patterning with association, 
predicting no difference between Assoc+Exp+ and Assoc+Exp− in the 
rERPs – which is the pattern that was observed.

P600. A positivity in Assoc+Exp−, but not Assoc−Exp−, relative to 
Assoc+Exp+ was observed in the original data, even though both con-
ditions were implausible. Thus, modeling the observed data would re-
quire LLM surprisal to be high in the implausible condition Assoc+Exp−,
and lower in the other implausible condition Assoc−Exp− as well as 
the plausible baseline Assoc+Exp+. As confirmed by Brouwer et al. 
(2021a) and Delogu et al. (2021, 2025), the absence of the posi-
tivity in Assoc−Exp− was due to component overlap: the preceding 
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Fig. 7. Study 2 (26 participants), rERPs re-estimating observed data with the model specified in Eq.  (3) with association set to its mean (left), rERPs re-estimating this data with 
LeoLM surprisal (middle) and corresponding residuals (right).
strong negativity in this condition sustained throughout the ERP epoch 
and concealed the subsequent positivity. To account for this phe-
nomenon, we first isolate the influence of plausibility and re-estimate 
the data, as described in the Method section. This reveals a positivity 
in both implausible conditions Assoc+Exp− and Assoc−Exp− relative 
to Assoc+Exp+, as can be seen in the left panel of Fig.  7. The rERP 
analysis is then conducted on the re-estimated data, potentially allow-
ing LLM surprisal to predict the increased positivity in the implausible 
conditions in this time window.

We only present the forward estimates and residuals for LeoLM in 
Fig.  7, where close inspection reveals a minimally stronger positivity 
in condition Assoc−Exp−. This difference is hardly noticeable for the 
forward estimates based on the other LLM’s surprisal values. Indeed, 
the residuals clearly show that the plausibility effect (Assoc+Exp− & 
Assoc−Exp− relative to Assoc+Exp+) is not adequately modeled in the 
corrected ERPs.

Summary. Surprisal by all three LLMs was a significant predictor 
throughout the N400 (see Fig.  6), and partially in the P600 time-
window (see Fig.  7, where we focus our analysis on LeoLM). The N400 
effect pattern observed in this study, however, poses a challenge for 
LLM surprisal: the less expected condition Assoc+Exp− did not elicit 
an increased negativity, due to the strong semantic association between 
the target and the context. Surprisal values obtained with LeoLM, our 
largest LLM in terms of model complexity and training data size, pattern 
with human judgments of plausibility and expectancy, thus predicting 
an increased negativity in the rERPs that was not observed in the 
N400, but rather in the P600. In contrast, surprisal values obtained 
with the smallest LLM (GerPT-2) pattern with association rather than 
expectancy, predicting the (observed) absence of this difference in the 
N400.

The implausible and associated condition Assoc+Exp− elicited a 
P600 relative to the plausible and associated baseline. The implausible 
and un-associated condition Assoc−Exp− did not lead to an observable 
P600 difference due to component overlap. Evaluating LLM surprisal 
on re-estimated ERPs that account for component overlap and show a 
positivity for both implausible conditions relative to the baseline, we 
find that none of the LLMs yields surprisal values that allow to capture 
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this difference in the rERPs, although surprisal values from the largest 
LLM appear to predict a slightly increased positivity for the implausible 
and unassociated condition.

3.4. The P600 as continuous index of plausibility-driven expectancy

Study 3 found that repeated priming of the target word can lead 
to the absence of any N400 effects between gradually less plausible 
conditions. Note, that the pre-N400 negativity which can be observed 
in condition Exp−, can be explained by the high cloze probability of the 
distractor, and is hence akin to a mismatch negativity (see Aurnhammer 
et al., 2023 for a discussion). Instead, gradually decreased plausibility 
elicited an increasingly positive P600 amplitude. In this study, a context 
paragraph repeats the target word multiple times to maximally prime 
its meaning.7 The subsequent target sentence then offers a continuation 
in which the target word is either plausible (Exp+), less plausible 
(Exp−) or implausible (Exp−−). See Fig.  8 for mean plausibility rat-
ings, cloze probability and an example item. The graded plausibility 
manipulation is achieved by continuously decreasing the plausibility 
of the target word being the object of the preceding verb: ‘‘dismissed 
... the tourist ’’ Exp+ vs. ‘‘weighed ... the tourist ’’ Exp− vs. ‘‘signed ... 
the tourist ’’ Exp−−. Due to the repetition priming noted above, the 
association between the target and the context is equally strong in all 
three conditions and no N400 effects were elicited. Instead, the gradual 
decrease in plausibility led to an increasingly positive amplitude in the 
P600 window, with the strongest positivity for condition Exp−− > Exp−
> Exp+. In order to model the N400 window in the rERPs, mean LLM 
surprisal would need to be equal in all three conditions. In contrast, to 
model the P600 window, mean surprisal should be highest in Exp−−
and gradually lower in Exp− and Exp+.

N400. Inspecting the surprisal densities in the top row of Fig.  9, 
we observe that for all three LLMs, mean surprisal is higher with an 
increased spread in the less plausible and implausible conditions (Exp−

7 The stimulus materials were based on materials by Nieuwland and Van 
Berkum (2005).
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Fig. 8. Study 3 (30 participants), experimental conditions, mean human ratings across items, example item and observed ERPs.

Fig. 9. Study 3 surprisal densities (row 1), rERP forward estimates (row 2), rERP residuals (row 3), t-values and significant corrected p-values (row 4).
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and Exp−−) relative to the plausible baseline Exp+.8 In the rERPs, 
this leads to the prediction of an unobserved increased negativity 
for conditions Exp− and Exp−− when using surprisal computed with
LeoLM and GerPT-2 large. This negativity is less noticeable for the 
forward estimates computed with GerPT-2 surprisal.

P600. As the densities in the top row of Fig.  9 show, the difference 
in mean LLM surprisal is small between conditions Exp− and Exp−−, 
although higher in both conditions relative to Exp+. Consequently, 
in the rERPs, LLM surprisal predicts an increased positivity for the 
conditions with decreased plausibility. However, the gradedness of this 
effect is not captured. There is no prediction of an increased positivity 
in condition Exp−− relative to Exp−.

Summary. Surprisal by LeoLM and GerPT-2 large was a sig-
nificant predictor in some time samples in the N400. In the P600, 
surprisal by GerPT-2 was a significant predictor throughout most 
time samples, while surprisal by LeoLM and GerPT-2 large was a 
significant predictor in some time samples. However, no N400 effects 
were observed in the increasingly less plausible conditions relative 
to the plausible baseline, due to the repeated priming of the target 
word which leads to a strong association with the context. Modeling 
this absence of differences is again challenging for LLM surprisal, as 
it would require the LLM to assign a similar probability to the target 
word in all conditions, but a good language model should have learned 
to assign increasingly lower probability to increasingly unexpected 
continuations. LLM surprisal is higher in the conditions Exp− and 
Exp−− relative to Exp+. Consequently, the higher LLM surprisal for 
conditions Exp− and Exp−− still predicts a small negativity for the 
less plausible and implausible conditions, which was not observed. 
In the P600 window, the gradually decreased plausibility elicited a 
continuously increased amplitude (Exp−− > Exp− > Exp+). However, 
mean LLM surprisal only differs slightly between the less plausible and 
implausible conditions. Thus, in the rERPs it predicts a difference of 
plausibility but not the gradedness of this difference.

4. Discussion

There is broad empirical support for expectation-based accounts of 
language comprehension as formalized by surprisal in Eq.  (1). Given 
the remarkable performance of recent large language models which 
directly operationalize surprisal, we sought to examine the relationship 
between LLM surprisal and two of the most salient ERP indices of lan-
guage comprehension: the N400 and P600. Importantly, any empirical 
evaluation of the relationship defined in Eq.  (1) faces a many-to-many 
mapping problem: there are multiple measures of cognitive effort, and 
many possible operationalizations of surprisal.

With regard to the left-hand side of Eq.  (1), reading times, eye 
movements, or ERP components offer different measures of processing 
effort that may more or less reliably reflect the full extent of the dif-
ficulty which comprehenders experience when processing a word. The 
N400 and the P600, for example, both index processing in a manner 
which is differentially sensitive to word expectancy. Beyond contextual 
expectancy, the N400 is also sensitive to simple contextual association, 
to the extent that association can attenuate (Aurnhammer et al., 2021) 
and even override (Aurnhammer et al., 2023) any expectancy effects in 
this time window. This is consistent with Delogu et al. (2019), as well as 
ample evidence from reversal anomalies demonstrating the absence of 
an N400 for words that are unexpected based on all linguistic and world 
knowledge (see Kuperberg et al., 2007; Bornkessel-Schlesewsky and 
Schlesewsky, 2008; Brouwer et al., 2012 for reviews), and the broader 
insensitivity of the N400 to syntactically unexpected words, which are 
rather indexed by the P600, as discussed below (see Gouvea et al., 
2010 for a review). Taken together, these findings present a serious 

8 We note that LeoLM shows the highest mean surprisal for Exp− instead 
of Exp−−.
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challenge to the claim that the N400 indexes true surprisal. By contrast, 
the P600 is insensitive to association, and known to robustly respond 
to words that are unexpected based on morpho-syntactic, semantic, 
and pragmatic constraints (see Gouvea et al., 2010; Brouwer et al., 
2012; Hoeks and Brouwer, 2014 for reviews). Furthermore, Aurnham-
mer et al. (2023) demonstrate that the P600 is continuously sensitive 
to plausibility grounded in world-knowledge. Therefore, we consider 
whether the P600 may provide a more reliable, yet underexplored, 
index of true surprisal compared to the N400.

Turning to the right-hand side of the equation sign in Eq.  (1), 
LLMs based on transformer architectures (Vaswani et al., 2017) have 
become a focus of recent research into expectation-based processing. 
In addition to being trained on the vast amounts of linguistic data 
necessary to accurately reflect the distributional properties of language, 
their performance also suggests they capture plausibility – including 
aspects of world and event knowledge – suggesting they are better at 
approximating true surprisal than previous language model architec-
tures. While surprisal estimates from LLMs have indeed been found to 
provide a close fit to a range of neurobehavioral processing indices 
(e.g., see de Varda et al., 2023), much of the supportive evidence 
is based on correlating LLM surprisal with language from naturalistic 
corpora. While such correlations underline the robustness of surprisal 
theory, our primary focus is on which ERP component provides the 
best index of true surprisal, as well as how well this is operationalized 
by LLMs. We therefore motivated the evaluation of three controlled 
datasets which are particularly revealing about the differential response 
of the two components to manipulations of expectancy and association, 
as these are not easily dissociable in naturalistic data. We analyzed the 
surprisal estimates from three current German LLMs on these datasets 
in order to gain insight into the generality of our findings.

4.1. LLM surprisal as predictor of the N400 or the P600

Since its discovery by Kutas and Hillyard (1980), the N400 has 
repeatedly been found to be sensitive to expectancy manipulations: 
unexpected words generally elicit an increased negativity compared to 
expected words. Consequently, previous research has tested whether 
N400 amplitude can be predicted by LLM surprisal on both naturalistic 
(e.g., Merkx and Frank, 2021) and experimental data (e.g., Michaelov 
et al., 2024). Overall, a significant negative correlation has been ob-
served. However, among numerous linguistic and non-linguistic fea-
tures, the N400 is also sensitive to contextual semantic association (Ku-
tas and Federmeier, 2011). Association is not concerned with grammat-
icality or plausibility, i.e., surprising continuations that are ungrammat-
ical and/or implausible may be highly associated with the context and 
hence attenuate processing effort reflected in the N400. Therefore, we 
argue that these findings challenge the role of the N400 as a reliable 
index of surprisal, as surprisal by definition is unaffected by simple 
association (Levy, 2008).

In the ERP studies which we evaluated, association either atten-
uated expectancy effects in the N400 (Study 1), or eliminated them 
completely (Study 2 and 3). LLM surprisal was able to capture the 
additive N400 effects of association and expectancy observed in Study 
1. This finding implies that not only the N400 but also LLMs are to some 
extent sensitive to association. This result is also in line with previous 
results reported by Michaelov and Bergen (2022) about the stimuli 
of Metusalem et al. (2012): when two continuations were matched for a 
cloze probability of zero, the less associated continuation led to higher 
LLM surprisal.

Cases in which association eliminates expectancy effects remain 
challenging for LLMs, however. In Study 2, the condition Assoc+Exp−
is less expected than Assoc+Exp+. Yet, no N400 effect of expectancy 
was observed between these conditions, due to the target word being 
highly associated with the context in both conditions. Only the condi-
tion that is both unassociated and unexpected (Assoc−Exp−) elicited 
an increased negativity relative to the other conditions. The same logic 
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applies to the N400 data of Study 3, where the conditions are either 
expected, less expected, or unexpected, but the strong association of 
the target to the context across conditions eliminated any expectancy 
effects. Thus, to correctly model N400 amplitude, LLMs would need 
to assign equal likelihood to target words in each condition despite 
their varying expectancy. The extent to which LLM surprisal does this, 
however, would suggest a divergence from true surprisal.

Such a divergence could reflect the extent to which LLMs can learn 
the relevant world/event knowledge that determines the plausibility – 
and thus expectancy – differences of the conditions in Study 2 and 3, 
which would be necessary for them to assign lower probabilities to less 
plausible continuations. Kauf et al. (2023) investigated this question, 
and found that LLMs are consistently sensitive to sentences describ-
ing impossible states-of-affairs, but not necessarily to those describing 
possible but unlikely ones. While this suggests mixed sensitivity of 
current LLMs to plausibility based on world knowledge, one would 
expect better language models to capture such plausibility-driven ex-
pectations and be less affected by association. As LLMs are trained to 
minimize perplexity on naturalistic data, smaller LLMs tend to have 
a higher perplexity. As a consequence, such models may be poorer 
at distinguishing plausible and implausible words that have not been 
adequately observed during training, and we speculate that they may 
rather rely on simple association. Indeed, our results are in line with 
this, as in our analysis of Study 2 we find that surprisal by the small 
and medium-sized GPT-2 models captures the observed absence of a 
difference best, while surprisal by the largest LLM predicts an unob-
served negativity for Assoc+Exp− relative to Assoc+Exp+. Analogously, 
the smallest LLM predicts the least amount of difference between all 
conditions in the data of Study 3. The sensitivity of LLM surprisal to not 
only expectancy but also association found for controlled experimental 
data in the present study may thus explain the previously observed 
correlation between the N400 and LLM surprisal in naturalistic data.

We also assessed the ability of LLM surprisal to account for differ-
ences between conditions in the P600. The P600 has been found to 
be sensitive to syntactic, semantic and pragmatic expectancy (see Gou-
vea et al., 2010; Brouwer et al., 2012; Hoeks and Brouwer, 2014 
for reviews). Crucially, as the P600 is insensitive to association, we 
hypothesize that this component offers a more direct index of true 
surprisal. In the ERP studies we evaluated, P600 effects were elicited by 
manipulating semantic plausibility, as determined by script-knowledge 
(Study 2), or by selectional restrictions of verbs (Study 1 and 3). LLM 
surprisal was able to account for the increased positivity elicited by 
the more salient expectancy manipulations in Study 1 and Study 3. 
However, it could neither capture the graded plausibility effects in
Study 3, nor the script-knowledge violations in Study 2. As discussed 
above, the inability of LLM surprisal to completely capture the P600 
in these two controlled studies may be due to (a) the influence of 
association on LLM surprisal, and/or (b) variability in the ability of 
LLMs to learn relevant world/event-knowledge plausibility constraints 
on expectancy. This is consistent with our observation that the surprisal 
from the largest LLM – which is less sensitive to association and more 
likely to approximate true surprisal – performed best in capturing the 
P600.

While the aim of the present study was not to assess the specific 
parameters of the models considered, the differences in their perfor-
mance naturally lead to the question of which LLM features contribute 
to their psychometric quality, that is, how well their surprisal estimates 
match neurobehavioral processing data (de Varda and Marelli, 2023; 
Wilcox et al., 2023a). Factors that have been shown to influence model 
behavior include the amount of training data the LLM has been exposed 
to, the number of its trainable parameters, hidden layers, attention 
heads and also the amount of previous context which it considers 
during prediction. While it was initially assumed that psychometric 
quality linearly increases with decreasing perplexity (Goodkind and 
Bicknell, 2018), further research found conflicting results. LLMs which 
are smaller with regard to their architecture, training data size or 
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training duration, i.e., LLMs with higher perplexity, were found to 
provide a closer fit to human reading times than larger ones (Oh and 
Schuler, 2023b; Shain et al., 2024). Oh et al. (2024) argued that this 
effect may arise due to larger LLMs becoming overly accurate in pre-
dicting the probability of rare open-class words, thus underestimating 
reading times for these words. Moreover, Kuribayashi et al. (2022) 
found that LLMs which were more constrained in their context size, 
also led to a closer reading time fit. Furthermore, de Varda and Marelli 
(2023) observed that surprisal from LLMs of different sizes predict early 
versus late eye-tracking measures differentially well, such that earlier 
measures were better predicted by smaller, and later measures better 
predicted by larger LLMs. In sum, the fit of LLM surprisal to various 
neurobehavioral processing indices is complex, with numerous factors 
contributing to LLM performance, and any conclusions about the effect 
of LLM parameters on psychometric fit with ERPs remain to be explored 
in future experiments.

4.2. Reconciling LLM behavior with the functional interpretation of ERPs

The focus of the present investigation has been to assess the degree 
to which surprisal, as estimated at the output layer of an LLM, can 
explain observed N400 and P600 effects in language comprehension. 
Due to the partial orthogonality of N400 and P600 responses to various 
aspects of the next word, it is not possible for LLM surprisal to fully 
explain both of these components. Indeed, the differential sensitivity 
of the N400 and P600 – as exemplified by the studies evaluated here – 
have underpinned the functional interpretation of the components with 
regard to which mechanistic processes they index. Retrieval-Integration 
(RI) theory, for instance, posits that the N400 indexes the retrieval of 
word meaning from long-term memory, while the P600 reflects the 
integration of this meaning into an unfolding utterance representa-
tion (Brouwer et al., 2012; Brouwer and Hoeks, 2013; Brouwer et al., 
2017; Venhuizen and Brouwer, 2025). RI theory predicts facilitated re-
trieval of the meaning of the next word if it is contextually expected by, 
or associated with, the prior context, resulting in an attenuated N400 
amplitude. The cost of integrating this retrieved word meaning into an 
unfolding utterance representation, by contrast, is predominantly deter-
mined by linguistic and plausibility constraints, such that unexpected 
words entail greater effort, resulting in larger P600 amplitude.

One approach to reconciling such a mechanistic account of the 
cognitive processes underlying the N400 and the P600, is to look 
for correlates of these processes and their assumed representation in 
different internal layers of an LLM. For instance, as earlier layers of 
an LLM are closer to the input word embeddings, the computational 
and representational dynamics at these layers may be closer to those 
underlying the N400. On the other hand, computations and representa-
tions closer to the final layers may be more reflective of utterance-level 
integrative processes, and thus better capture the computations and 
representations underlying P600. Indeed, this perspective is consistent 
with the hypothesis that more shallow LLM representations align better 
with earlier, and deeper representations better with late processing 
indices (Kuribayashi et al., 2025). This hypothesis could, for instance, 
be tested by applying the tuned lens method (Belrose et al., 2023), 
which reveals model predictions about upcoming input at different LLM 
layers, other than just the output layer.

Alternatively, methods from the field of mechanistic interpretability 
may be leveraged (see Rai et al., 2024 for a review). Research in this 
area has begun to shed light on the mechanistic roles of different LLM 
representations, such as the multilayer-perceptron layers and attention 
heads, and how they combine to form circuits which are specialized 
in fulfilling sub-goals during next-word prediction (Geva et al., 2023; 
Wang et al., 2022). On a final note, building on work by Kauf et al. 
(2023), probing methods may be harnessed to investigate the degree to 
which different LLMs layers are sensitive to, for instance, association, 
plausibility and world/event knowledge.
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5. Conclusion

Expectations regarding the next word play a central role in lan-
guage comprehension, such that listeners process expected words with 
greater ease than less expected ones. Surprisal theory formalizes this 
relationship by positing that the cognitive effort required to process 
a word is proportional to its negative log-probability in context. Crit-
ically, the true expectancy of a word should in principle reflect all 
relevant determinants of what words are likely to appear next — includ-
ing distributional, linguistic, and world knowledge-based plausibility 
constraints. LLMs trained on next word prediction directly compute 
richly contextualized surprisal estimates which, when combined with 
their deceptively human-like language capabilities, has motivated their 
consideration as plausible models of human comprehension at both the 
computational and algorithmic level. We here evaluated the degree to 
which LLM surprisal aligns with the two most salient neural correlates 
of comprehension – the N400 and the P600 – which are differentially 
sensitive to the semantic association and contextual expectancy of a 
word.

Critically, while previous studies have established a link between 
the N400 and LLM surprisal, these results are predominantly based on 
evaluations of naturalistic data, in which association and expectancy 
are confounded. By focusing the present evaluation on factorial designs 
that tease apart association and expectancy, we challenge the validity 
of the N400 as an index of true surprisal. While we find that LLM 
surprisal does indeed not fully align with the N400, we do observe that 
it is sensitive to association, especially in smaller models. Hence, to 
the extent that LLM surprisal properly models the N400, it is in fact 
a poor model of true surprisal. Due to this sensitivity to association 
and/or the inability to learn world/event knowledge constraints – at 
least for the LLMs considered here – we find that LLM surprisal also 
does not fully align with the P600. Importantly, as the P600 is insensi-
tive to association, patterns with expectancy in a continuous manner, 
and is more broadly sensitive to syntactic, semantic and pragmatic 
expectancy, we argue that the P600 is a better index of true surprisal. 
We therefore posit that – when the full complex of N400 and P600 
responses as revealed by controlled manipulations is taken into account 
– we should regard the P600, rather than the N400, as the neural 
correlate of true surprisal. Indeed, we advocate more generally for 
the importance of evaluating LLMs against controlled experimental 
data that more fully reveal the sensitivity of relevant ERP components 
to a range of expectancy manipulations, thus complementing more 
naturalistic data. Finally, given our observations that the surprisal from 
the largest LLM performed best in capturing the P600, we hypothesize 
that better performing LLMs will be both less sensitive to association 
and better embody the full-range of linguistic and world knowledge 
constraints that determine true surprisal.
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