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Computational Psycholinguistics 

1. Introduction 

How is it that people map between a linguistic signal and a mental representation of the 

meaning that signal encodes? While this mapping can be viewed from both the language 

production (see Dell & Cholin, 2012) and comprehension perspectives, the focus of this chapter 

will be on the latter. Even within comprehension, there are numerous stages involved in this 

process – recovering a phonological or orthographic representation of words, determining their 

relevant morphological and syntactic properties, retrieving their meaning from long-term 

semantic memory, and then combining words to recover the intended message of the entire 

utterance. The complexity, ambiguity and context-dependent nature of language, combined with 

the dynamical nature of the processes that support comprehension in real time, highlights the 

need for computational theories – which can be instantiated as implemented computational 

models – of how people retrieve the words of an utterance as they are encountered, and 

incrementally integrate them into an unfolding representation of the intended meaning, based on 

what they know about the words themselves, the structure of language and possible meanings. 

Importantly, in focusing on sentence level comprehension, the processes of speech perception 

and word recognition, which have also been investigated extensively using computational 

models (Magnuson et al., 2012), will be taken for granted. Similarly, models of how language is 

acquired by children (Alishahi, 2010) are not considered. For a comprehensive review of the 

numerous dimensions of psycholinguistic research see Spivey et al. (2012). 

Perhaps the greatest challenge to developing theories and models of comprehension, as is 

the case for many areas of cognitive modelling, is that the central players – the nature of mental 

representations, the constraints that govern their construction, the processes involved in 
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constructing representations, and how these processes interact – cannot be directly inspected 

using behavioral or neurophysiological methods. Furthermore, most online measures of human 

language comprehension – whether reading times, event-related potentials, or activations of 

brain regions – are known to be influenced by a range of factors, likely reflecting multiple 

underlying cognitive processes. It is therefore essential that explicit computational linking 

theories also be developed that identify precisely how cognitive processes are indexed by 

observable measures of comprehension. Only then can empirical data from a given measure be 

used correctly and consistently to inform computational theories that best reflect the nature of the 

human language comprehension system. For example, word by word reading times offer a 

behavioral measure of the time people spend on each word as they comprehend a sentence, 

which is generally taken to reflect cognitive effort (see Rayner, 1998). Increases in effort have 

then been associated with more specific mechanisms such as word recognition, lexical and 

syntactic disambiguation, reanalysis, as well as working memory. Neurophysiological measures 

such as event-related brain potentials, are scalp-recorded voltage fluctuations caused by post-

synaptic neural activity, time locked to the onset of each word in a sentence. Observable 

components are generally taken to reflect the neural activity underlying specific computational 

operations carried out in given neuroanatomical networks. Of particular relevance to language 

comprehension are the N400 and P600 components (see Kutas and Federmeier, 2011, for a 

review). While there is some debate regarding precisely what cognitive processes these 

components index, the N400 is known to respond to semantically unexpected words, while the 

P600 has been demonstrated to be sensitive to more compositional syntactic, semantic and 

pragmatic violations. Other neurophysiological methods such as fMRI, offer further insight into 

the brain regions associated with particular linguistic features. Wehbe et al. (2014), for example 
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show that machine learning methods can be used to predict activity in particular brain regions 

based on various lexical, syntactic and semantic features of words during reading of naturalistic 

texts. Importantly, however, our primary goal in computational psycholinguistics is not to model 

empirical measures as precisely as possible, but rather to develop models of language 

comprehension – that recover meaning from the linguistic signal – in a manner that is informed 

by, and consistent with, behavioural and neurophysiological measures. 

Linguistic theories provide independently motivated accounts of the rules and 

representations that determine possible linguistic forms (syntax) and meanings (semantics). 

Indeed, all cognitive models must adopt some representational framework, minimally for 

defining the output of the system, but also possibly for intermediate levels of representation. 

Linguistic theories, however, traditionally emphasize human linguistic competence – formally 

characterizing “what” it means to know language – over the performance concerns about “how” 

the linguistic signal is encoded and decoded in real time. As a result, such accounts are often not 

entirely amenable to, nor informed by, demands of incremental processing, and are almost 

exclusively symbolic in nature, making them well-suited to more high-level symbolic processing 

models but more challenging to integrate naturally within neurocomputational accounts. 

Another consideration that can help inform the development of computational theories of 

language is to consider broader theories of cognition. In particular, it has been argued that many 

cognitive systems can be viewed as rational, to the extent that they appear to behave in a manner 

that is optimally adapted to the task of that system and the environment in which it functions 

(Anderson, 1991). If a particular system – such as language comprehension – is regarded as 

being rational, then one can reason abstractly about “what” the optimal way to perform the task 

would be, what Marr (1982) refers to as a computational level theory. This in turn can be used to 
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inform and constrain the development of suitable algorithmic level models that identify the 

actual mechanisms that instantiate the computational theory. Indeed, this approach has been 

dominant in computational psycholinguistics over the past two decades, resulting in the 

development of probabilistic theories that emphasize the role of likelihood in determining both 

human comprehension behavior in the face of ambiguity, as well as processing effort more 

generally.  

Despite the vast empirical literature on language comprehension that has accrued over the 

last fifty years, advancements in linguistic theory, as well as the paradigm shift from symbolic 

toward probabilistic and subsymbolic (neural) computation, there is still relatively limited 

consensus regarding which computational mechanisms best characterize the comprehension 

system. There are several reasons for this: (1) the nature of mechanisms and representations is 

underdetermined by the empirical evidence, (2) experiments typically test binary predictions 

derived from hypotheses about some specific aspect of processing, disconnected from any 

complete model of comprehension (Newell, 1973),  (3) interpretation of experimental findings is 

dependent on the linking hypothesis that is assumed, (4) results are often interpreted in isolation, 

and not reconciled with the broader literature. When developing and evaluating computational 

models of language, it is therefore important to take into account several dimensions: 

Overarching behavior: People accurately understand the meaning of most utterances they 

encounter and do so highly incrementally, and typically without conscious difficulty. Models 

need to explain this generally accurate and effortless behavior, as well as pathological cases 

where people have difficulty.  

Coverage: Models should not be tailored to individual phenomena and findings, but 

rather be consistent with as much relevant evidence as possible. As a consequence, it is 
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important that models are in principle scalable with respect to their potential linguistic coverage. 

Further, models should ideally map into meaning representations, and explain interaction with 

world and situational knowledge, which are crucial for comprehension. 

 Linking hypothesis: While any given empirical measure underdetermines our 

characterization of the underlying comprehension mechanism, establishing accurate linking 

hypotheses to multiple complementary online measures – such as behavioral (e.g., reading times, 

visual attention), and neurophysiological (event-related potentials) – has the potential to mitigate 

this problem.  

In this chapter a range of implemented computational theories of human sentence 

comprehension are reviewed, in the context of the above criteria, with a view to establishing both 

the points of consensus and important differences. A recently implemented neurobehavioral 

model of language comprehension, and its linking hypothesis with both neurophysiological and 

reading time measures, is then presented in greater detail in order to illustrate and integrate the 

concepts more concretely.  

 

2. Early Perspectives on Sentence Processing 

In pursuing the goal of characterizing the cognitive processes underlying the incremental, word-

by-word nature of human sentence processing, early accounts focused on syntactic parsing: how 

is it that people integrate each word into a connected, semantically interpretable, yet possibly 

incomplete, analysis of the unfolding sentence (Frazier 1979)? While for most people brief 

introspection is enough to confirm this assumption of incrementality – that each word that is 

encountered contributes to furthering our understanding of the meaning being conveyed – this 

property has important consequences. Firstly, it formally constrains the set of mechanisms that 
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one can consider with regard to the recovery of meaning, and secondly it entails that parsing 

mechanisms will need to make decisions in the face of substantial ambiguity. While much 

ambiguity in language – whether lexical, syntactic, and semantic – is eliminated by the end of the 

sentence, incrementality entails that decisions about how to integrate each word into the 

unfolding sentence interpretation must be made as soon as that word is encountered. This 

predicts that, if a decision taken at some point of ambiguity in the sentence is subsequently 

disconfirmed, it will be necessary for the parsing mechanisms to re-process the sentence, or 

restructure the current analysis, to accommodate the disconfirming word. This reprocessing cost 

is postulated to result in observable processing effort as manifested by, for example, word-by-

word reading times. A classic illustration of this comes from the reduced relative clause 

ambiguity (Bever, 1970) in (1a) compared to its unreduced, and unambiguous, counterpart in 

(1b) (adapted from Rayner et al.,1983): 

 

(1a) “The florist sent the flowers smiled.” 

 (1b) “The florist who was sent the flowers smiled.” 

 

When “sent” is first encountered in (1a) it is in fact ambiguous as being either a simple past verb, 

or a past participle. As illustrated in Figure 1 (ignore the probabilities for now), the parser must 

therefore decide whether to analyze it as the main verb of the sentence (and thus as simple past) 

as shown in the first parse tree, or as a past participle which begins a (reduced) relative clause, 

illustrated by the second tree. Frazier (1979) argued that human preferences for a range of such 

local structural ambiguities could be explained by two simple decision principles. The Minimal 

Attachment (MA) principle postulated that the parser should prefer less complex syntactic 
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analyses (i.e., fewest nodes in the parse tree). In this case, MA predicts that “sent” is initially 

analyzed as the main verb – as this parse tree has fewer nodes when “sent” is processed. While 

the noun phrase “the flowers” is consistent with either analysis, the verb “smiled” – which can 

only be the main verb – disconfirms the previously adopted main clause analysis, explaining why 

most people find (1a) to be difficult: once “smiled” is encountered either substantial reprocessing 

effort is required to construct the reduced relative clause interpretation of “sent the flowers”, or it 

simply cannot be integrated at all.  

 In cases where two possible analyses are equally minimal according to MA, a second 

principle – Late Closure – postulates that the word should be attached to the most recently built 

part of the parse tree. This commonly occurs with modifying phrases which can be associated 

with several phrases, as in (2): 

 

 (2) “Someone shot the governor of the company that had been sold/elected”  

 

Here, when “that” is reached, the parser must begin the construction of a relative clause that can 

modify either “governor” or “company”. LC predicts this will be attached to “company”, 

explaining why less reading effort is observed when the final word of the relative clause is 

consistent with that attachment (e.g. “sold”), compared to when it forces attachment to 

“governor” (e.g. “elected”). 

 Beyond these two decision principles for resolving structural ambiguity, Frazier 

explicitly assumes several other important characteristics of the parsing mechanism. Firstly, the 

parser is strictly serial, in that once a preferred parse has been constructed, alternatives are no 

longer considered. Second, the parser is purely syntactic, with access to only basic part of speech 
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information about incoming words of the sentence, and decision strategies that are determined by 

structural properties of the parse. The parsing model can thus be viewed as very strictly modular, 

in the sense of Fodor (1983), in that the initial incremental parsing and disambiguation process 

has no access to, and is not influenced by, either detailed lexical (e.g., meaning, frequency, 

subcategorization) or semantic (e.g., plausibility) information. The overriding motivation for this 

collection of assumptions is that they contributed to reducing the amount of computation, and 

thus effort, involved in achieving real time comprehension. Importantly, however, no 

implementation or precise parsing algorithm is provided, and it is interesting that early attempts 

to implement Frazier’s decision strategies reveal that it is not straightforward. Firstly, strictly 

incremental parsing algorithms are in fact not straightforward to implement for conventional 

(hierarchical) phrase structure grammars (see Crocker, 1999, for discussion). Indeed, Marcus 

(1980) developed a deterministic model of human parsing that required extensive non-

incremental “look ahead” capabilities to explain why many structural ambiguities do not cause 

substantial processing difficulty, but in doing so completely violates any notion of 

incrementality. Secondly, MA entails that the parser be able to compare competing alternative 

parses with respect to their global structural properties, something which cannot be accomplished 

fully in terms of standard serial parsing operations (Pereira, 1985), emphasizing the importance 

of developing fully specified computational theories, rather than relying on purely verbal 

formalizations. 

 Following in Frazier’s footsteps, however, several computational models of sentence 

processing were developed that, while differing in various important respects, shared her view of 

a serial, incremental, and largely modular syntactic processing architecture. For example, 

Crocker (1996), building on proposals by Pritchett (1988), implemented a model for English and 
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German which prioritized thematic role assignment (agent, theme, location, etc.) over simple 

structural decision principles like MA. Stevenson (1994) proposed a related hybrid network 

model of human parsing and disambiguation which emphasized both role assignment and 

minimal structure building.  Gibson (1998), in contrast, developed a model in which memory 

load (unresolved dependencies) and locality contribute to determining comprehension effort as 

well as preferences in resolving ambiguity, while Lewis and Vasishth (2005) use the ACT-R 

framework (see the chapter on Cognitive Architectures by Niels Taatgen and John Anderson in 

this handbook) to model the role of memory retrieval in determining parsing difficulty.  

It is worth noting that all of these models assume that the human parser incrementally 

recovers a grammatically licensed and semantically correct interpretation of a sentence. There 

are, however, a range of findings suggesting that comprehenders – depending on their goals, and 

situational demands – may not always analyse sentences fully or even correctly (Sanford & Sturt, 

2002; Ferreira, 2003). Global attachment ambiguities as in (2) for example, might simply be left 

unresolved if the final verb does not disambiguate the two readings (e.g., “discredited” instead of 

“sold”). Other evidence suggests that people sometimes misunderstand simple Noun-Verb-Noun 

sequences “the dog was bitten by the man”, failing to recover the passive reading, and rather 

using an Agent-Action-Patient heuristic (i.e. “the dog bit the man”), particularly when that 

reading is more plausible (Townsend & Bever, 2001; Ferreira, 2003; Gibson et al., 2013).  

Studies using event-related potentials, have also been taken as providing evidence that 

anomalous sentences like “After an air crash, where should the survivors be buried?” (where the 

survivors are presumably still alive) elicit no effect in the N400 component, despite this 

component often being found for semantically unexpected words (Sanford et al., 2011). Related 

evidence from role-reversal anomalies, such as “The hearty meal was devouring …” also elicit 



Computational Psycholinguistics        11 

no N400 effect (Kim & Osterhout 2005; see also Hoeks et al., 2004; van Herten et al. 2005), 

suggesting that people may construe a plausible meaning (“the meal was devoured”) for an 

implausible sentence (though an alternative interpretation is considered in section 5).  Taken 

together, evidence that comprehenders may modulate the depth and veracity of linguistic 

processing – possibly as a function of their communicative goals and available cognitive 

resources, but also their prior knowledge and expectations – has been used to argue that the 

comprehension system may in some circumstances function in a manner that is “good enough” 

(Ferreira et al., 2002). The diversity of these phenomena – spanning lexical meaning, 

grammaticality, semantic role reversals, as well as the underspecification of syntactic ambiguity 

– has thus far eschewed any uniform treatment (see Ferreira & Patson, 2007, for discussion), 

though models have been proposed which address particular phenomena such as role-reversal 

anomalies (e.g. Gibson et al., 2017; Rabovsky & McClelland, 2019). In general, the focus of 

discussion here will be on modelling the process of full understanding that has been attested in 

many psycholinguistic studies. Nonetheless, better understanding of how the human 

comprehension system modulates its depth and accuracy of processing may offer important 

insights into the nature of the mechanisms and representations involved. 

 

3. Probabilistic Models and Rational Approaches 

Many of the models discussed above, and particularly that of Frazier, assumed that cognitive 

limitations – coupled with the time sensitive demands of real time comprehension – were central 

in shaping the nature of the human parsing mechanism. That is, the need to quickly and 

incrementally structure the incoming signal into an interpretable representation is used to 

motivate serial processing (rather than constructing multiple analyses in parallel) and simple 
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modular decision principles. This perspective was fundamentally challenged by increasing 

empirical evidence that a variety of non-syntactic factors – such as prior experience (frequency), 

plausibility, context, and world knowledge – can rapidly influence disambiguation (MacDonald 

et al., 1994). This resulted in a shift away from highly restricted “serial, syntax first” models, 

toward models that start with the assumption that people bring considerable computing resources 

and diverse relevant information sources to bear on language comprehension. With hindsight, 

this perspective can be seen as a shift away from viewing comprehension as a system shaped by 

limitations on cognitive processes, to one in which it is viewed as more rational (Anderson, 

1991). That is, a view in which the behavior of the comprehension system is optimally adapted to 

the task (obtaining the correct meaning), given the environment (an incremental and ambiguous 

signal). Importantly, this view invites theorists and modelers to constrain our search for the 

specific mechanisms underlying comprehension, by first thinking carefully about what the goal 

of the system is, and how it can be optimally achieved: 

An algorithm is likely understood more readily by understanding the nature of the problem being 

solved than by examining the mechanism (...) in which it is solved. (Marr, 1982, p.27) 

 Taking this view, one can theorize what the goal of rational comprehension system might 

be (Marr’s computational level), and then consider what cognitively plausible mechanisms and 

representations (Marr’s algorithmic level) might instantiate such a theory (Crocker, 2005). As a 

first approximation, it seems reasonable to suggest that the comprehension system’s goal is to 

recover the most likely interpretation of the input, which can be formalized as in equation 1.  

(Eq 1) Î = argmax P(i|s,K)  
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where i ranges over the possible interpretations of the sentence s. That is, this function states that 

“what” the comprehension system does is seek to identify the interpretation Î that has the highest 

likelihood given the sentence itself, and our relevant knowledge K. Given the assumption of 

incrementality, this formalization can also be extended to the word-by-word construction of 

sentence meaning (but see Chater et al., 1998, for an alternative rational analysis).  

With this computational level theory in place, one can now consider what algorithmic 

level models are plausible instantiations of this theory. Jurafsky (1996) built on the abundant 

evidence for the role of frequency in both lexical and syntactic disambiguation to motivate a 

probabilistic likelihood-based model of the parsing process. The model departs from Frazier in 

two key respects: (a) it constructs all possible alternatives in parallel, and (b) it determines their 

probability on the basis of lexical and syntactic frequency information, including probabilistic 

information about the subcategorization preferences of individual verbs. Returning to the 

example (1a) above, Figure 1 illustrates how a probabilistic grammar and lexicon,1 shown in the 

panel on the right, can be used to assign a probability to each possible parse of the sentence after 

the verb “sent” is encountered. That probability is simply the product of the probabilities of each 

rule used to construct the parse tree. In this case, the reduced relative clause is assigned a 

probability more than two orders of magnitude lower than the main clause. This is due to a 

number of reasons: the additional relative clause rule (NP → NP VP), the lower probability of the 

 

1 This grammar is highly simplified for expository purposes. Phrases such as “the florist” should of course be fully 

parsed, the analysis assigned to the reduced relative clause is simplified, and the probabilities themselves were 

constructed to reflect relative likelihoods of the two structures. Typically the grammar and the probabilities would 

be determined using a large parsed corpus. 
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reduced relative (VP) itself, and the lower probability for “sent” to be a past participle. To explain 

why sentences such as this (and many others) are difficult, Jurafsky proposes a linking 

hypothesis under which parses that are too low compared to the highest probability parse – as is 

the case in this example – are eliminated by the parser (or “pruned”), such that they can’t be 

retrieved later in the sentence. While in this case the model makes the same prediction as Frazier, 

the model explains other instances of this ambiguity which do not cause the same degree of 

difficulty, due to differences in the specific probabilities. That is, the likelihood of the reduced 

relative clause analysis may be sufficiently close to that of the main clause parse, that it is not 

pruned, meaning that when the main verb “smiled” is encountered, the relative clause analysis is 

still available. 

  

 

Figure 1: Syntactic analyses of the main clause (left) and reduced relative clause (middle) 

ambiguity. A probabilistic context-free grammar (right) used to derive the probabilities of both 

parse trees. 
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As an algorithmic level account, Jurafsky proposed a concrete mechanism that can be seen as 

approximating the computational level theory. Specifically, an incremental parallel parser 

exploits a  probabilistic context-free grammar to approximate the true probability of syntactic 

analyses and substitutes bounded parallelism (implemented using beam search based on the 

pruning of low probability parses) in place of full parallelism (which is often viewed as 

cognitively implausible). Crocker and Brants (2000) propose a wide-coverage probabilistic 

parsing model which can be seen as an alternative algorithmic level instantiation of the same 

computational level likelihood theory, differing primarily in the role of verb-frame information, 

the nature of the pruning mechanism, and the proposal of a linking hypothesis in which reranking 

of (non-pruned) parses is assumed to result in more graded increases in reading difficulty.  

 One limitation of these models, however, is the lack of any means to assess semantic 

plausibility of competing syntactic analyses. For example, contrasting (1a) with (1c), people 

typically find the (1c) version easier to understand, as evidenced by reduced total reading times 

(Rayner, 1983). This is because while “florist” is a good Agent of the “send flowers” event, 

encouraging the comprehender to prefer a main clause analysis, “performer” is a better Recipient 

of such an event, rendering the relative clause interpretation easier to recover. 

 

 (1c) “The performer sent the flowers smiled.” 

 

The increasing amount of empirical evidence from reading times demonstrating the rapid 

influence of semantic knowledge on human disambiguation (e.g., Trueswell et al., 1994) 

motivated several non-modular “constraint-based” theories. These accounts posit that 

probabilistic constraints at all relevant levels (from phonology and morphology through to 
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syntax, semantics and constraints provided by the context) contribute directly and immediately to 

determining which interpretation –– among the possible grammatical alternatives –– is best 

(Macdonald et al., 1994; Tanenhaus et al., 1995). This approach was instantiated in the 

Competition-Integration Model (CIM), illustrated in Figure 2, in which competing interpretations 

(I1 and I2) are simultaneously represented,2 with their relative activation being determined by a 

collection of probabilistic constraints, each providing more or less support for a particular 

interpretation, and with each constraint having its own weight compared to the other constraint 

(McRae et al., 1998). Crucially these constraints can in principle reflect any relevant source of 

information, such as lexical frequency bias and semantic plausibility, or even broader contextual 

constraints, resulting in their immediate influence on the resolution of ambiguity. 

 

 

Figure 2: The Competition-Integration Model (McRae et al., 1998). 

 

Constraint biases in the model are established independently using corpus frequencies (e.g., to 

determine the main clause versus relative clause frequency, and frequency of “sent” as either 

 

2 In contrast with other models discussed here, the CIM does not include any mechanism to construct the alternative 

interpretations, but rather models how the comprehension system resolves the ambiguity. 
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simple past or past participle) or human judgement studies (e.g., to determine how likely a 

“florist” or “performer” is to either send or receive flowers). To model the online disambiguation 

process, the probability of the two possible interpretations is computed as the weighted average 

of the probability assigned to it by each of the individual constraints (the “integration” step). A 

recurrent “feedback” mechanism readjusts the constraint biases to reflect the interpretation 

activations. The model then continues these integration-feedback cycles until one of the 

interpretations reaches threshold. This number of cycles is postulated to quantitatively index 

disambiguation effort that is reflected in reading times. As McRae et al. (1998) demonstrate, this 

approach is able to capture the influence, particularly of the thematic fit of the initial noun as 

either an Agent or Recipient of “sent”, on modulating the difficulty of these ambiguities. While 

this can be seen as another algorithmic instantiation of a likelihood model, it differs significantly 

with regard to the proposed linking hypothesis, which is only indirectly determined by the 

likelihoods of various constraints. One limitation of this approach, however, is that a new model 

must be constructed to model each ambiguous construction type and the constraints relevant to it 

(see Tanenhaus et al., 2000, for an overview). To address this shortcoming, Pado et al. (2009) 

demonstrated how thematic fit could be estimated from large corpora and integrated into a broad-

coverage incremental probabilistic parsing architecture similar to those discussed above, while 

also retaining a likelihood-based reranking linking hypothesis similar to Crocker and Brants 

(2000). 
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Figure 3: The Simple Recurrent Network architecture (Elman, 1990). 

 

In addition to the symbolic implementations of likelihood models above, many 

connectionist models also maximize the likelihood of their output representation, for a particular 

input, as a consequence of learning algorithms that minimize error on average (Rumelhart et al., 

1986), and thus reflect the statistical properties of their training environment (see the chapter on 

Connectionist Models of Cognition by Michael Thomas and James McClelland in this 

handbook). One particularly well-known illustration of this comes from Elman’s (1990) Simple 

Recurrent neural Network (SRN) – a three-layer feedforward network: input ↦ hidden ↦ 

output, in which at a timestep t, the hidden layer receives additional input from a context layer 

that contains the activation pattern of the hidden layer at timestep t-1. Crucially, the context 

layer provides a memory of words that have been processed previously, enabling the network to 

draw upon the entire unfolding sentence despite processing on a word-by-word basis (Figure 3). 

Elman (1990) demonstrated that, when trained to predict the next word – a task which is 

inherently non-deterministic for human languages – the model’s output was strongly correlated 

with the conditional n-gram likelihoods determined from the training corpus. While modeling 

next word prediction is clearly not equivalent to language comprehension, the SRN architecture 

has also been used to map into fixed “sentence gestalt” representations of sentence-level 
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meaning, which represent the main action and its associate role-fillers (McClelland et al., 1989) 

that also reflect likelihood (Mayberry et al., 2009; Brouwer et al., 2017; Rabovsky et al., 2018). 

However, while next-word-prediction networks can easily be scaled to unrestricted language (see 

e.g., Aurnhammer and Frank, 2019), a long-standing concern regarding connectionist models of 

human comprehension relates to the scalability and linguistic adequacy of such thematic role and 

sentence gestalt representations for recursive sentence structures, as well as to whether a fixed 

number of output units can represent the full compositional and hierarchical nature of possible 

meanings (see Lopopolo & Rabovsky, 2021, for one approach). Recent advances in 

connectionist computational linguistics have begun to address these issues (see, e.g., Bowman et 

al., 2016, and Linzen & Baroni, 2021), potentially offering solutions which may be relevant to 

future cognitive models. 

 

4. Expectation-based Models of Sentence Comprehension 

The probabilistic models outlined above can be viewed as algorithmic level instantiations of a 

computational theory which seeks to maximize the likelihood of recovering the correct 

interpretation. However, while all models have in common a linking hypothesis for which high 

likelihood interpretations will be easier to process than low likelihood ones, they differ 

substantially with regard to why this is the case – is it because low probability interpretations are 

completely pruned, or simply ranked lower, or is it due to the increased cycles of competition 

needed for a low probability interpretation to reach a threshold. That is, having identified a 

computational theory of the comprehension system, the linking hypotheses are only stated at the 

algorithmic level. Hale (2001) builds on consensus around likelihood-based architectures in 

proposing a computational level linking theory, which is grounded in Shannon’s (1948) 
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Information Theory. Specifically, Information Theory provides a mathematical framework to 

determine the amount of information that is conveyed by an event (such as encountering a word 

wi) – also known as its surprisal – as determined by its expectedness in a given context (since the 

likelihood of a word is heavily influenced by the context in which it appears): 

 

(Eq 2) 𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙(𝑤!) 	= 	−𝑙𝑜𝑔"𝑃(𝑤!|𝐶𝑜𝑛𝑡𝑒𝑥𝑡)	 

 

 Hale proposes that the effort required to process each word of an unfolding sentence 

should be proportional to its surprisal – the number of bits of information each word conveys, 

given the context in which it occurs (such as the preceding words). The prediction is clear: words 

that are highly expected in a particular context convey little information, and require little effort 

to process, while words that are unlikely convey more information, and entail more effort. At 

face value, this claim appears almost trivial. It has long been known, for example, that a word’s 

Cloze probability (Taylor, 1953) – namely, the likelihood that people will complete a particular 

context with a given word – is a robust predictor of its reading time and skipping probability 

(Rayner & Well, 1996), as well as N400 amplitude (Kutas & Federmeier, 2011). For this reason, 

many psycholinguistic experiments determine, and control for, the Cloze probability of critical 

words. However, as outlined by Hale (2001), and later expanded upon by Levy (2008), surprisal 

can also be seen as quantifying the reranking cost of an incremental probabilistic parser. 

Specifically, the surprisal of a word wi is determined based on prefix probabilities determined by 

the parser, based on the first i words of the sentence: 

 

(Eq 3) 𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙(𝑤!) = 	−𝑙𝑜𝑔"𝑃(𝑤!|𝑤#. . . 𝑤!$#) 	= 	−𝑙𝑜𝑔" 	
%('!...'")
%('!...'"#!)
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=	−𝑙𝑜𝑔" 	
∑ %(+|'!...'")	
%∈%'(()

∑ %(+|'!...'"#!)	
%∈%'(()

  

 

Under this formulation, the surprisal of a word wi is determined from the probability of the 

sentence prefix up to an including wi  – which is the sum of the probabilities of all the parses that 

span that prefix – divided by the probability of the sentence prefix before wi was encountered. 

Reconsidering the reduced relative clause, the appearance of “smiled” means that, while the 

denominator in Equation 3 will be the sum of both possible analyses shown in Figure 1, the 

numerator will only include the very low probability relative clause parse, resulting in high 

surprisal. One way to view surprisal, therefore, is as reflecting the relative loss of probability 

mass associated with the much more likely main clause parse, and the need to “shift attention” 

toward a much lower probability alternative. Indeed, Levy (2008) points out that surprisal at 

word wi is equivalent to the change in the probability distribution over all possible parses after wi 

is encountered compared to before it was encountered, as quantified by Kullback-Leibler 

divergence (KLD). As such, surprisal can be viewed as characterizing the effort associated with 

reranking, or shifting of attention, among possible parses based on the integration of word wi.  

Importantly, however, quantifying the effort of resolving such structural ambiguity is 

simply a special case of surprisal, which can just as well explain difficulty in unambiguous 

constructions, such as the preference for subject relative clauses over object relative clauses 

(Hale, 2001), or simply a word’s expectancy in a particular context. That is, even if only a single 

parse is possible up to word wi-1, not all continuations will be equally likely as there is still 

uncertainty regarding how the sentence will unfold lexically and syntactically, both of which will 

influence the unfolding probability of the utterance at w1...i, compared to w1...i-1 and thus the 

surprisal induced by wi (see Roark et al., 2009, for details). Furthermore, as Equation 2 makes 
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clear, while Surprisal theory can be implemented in terms of parse probabilities, there are many 

other algorithms that can determine the likelihood of a word in context, including so-called 

language models, which don’t recover any interpretation at all, such as statistical n-gram models, 

and connectionist word-prediction models based on SRNs and LSTMs (Aurnhammer & Frank, 

2019; Michaelov & Bergen, 2020). Indeed, this highlights what Levy (2008, pp. 1132-1133) 

refers to as a causal bottleneck, namely that “many different classes of generative stochastic 

process can determine conditional word probabilities” and will thus similarly account for 

empirically observed surprisal effects.  

The empirical coverage of surprisal theory is considerable in explaining reading-time 

behavior observed for many ambiguities (Hale, 2001; Levy, 2008) and in more naturalistic texts 

(Boston et al., 2008; Demberg & Keller, 2008; Smith & Levy, 2013). Similarly, surprisal has 

been found to correlate with neurophysiological measures, typically the N400, in both controlled 

(Delogu et al., 2017; Michaelov & Bergen, 2020; Staudte et al., 2021) and naturalistic (Frank et 

al., 2015; Brennan & Hale, 2019) studies. However, as the causal bottleneck illustrates, even 

relatively uninteresting language models can capture these effects. Thus, in the context of 

building models of language comprehension, the goal must rather be to explain why surprisal 

correlates with cognitive effort as a consequence of the mechanisms and representations that 

underlie the comprehension process, and fully characterize how surprisal is determined in such a 

mechanism, and manifest across the spectrum of relevant observable measures. 

While the instantiation of surprisal as KLD over syntactic analyses elevates Surprisal 

Theory as an overarching, explanatory linking theory of word-by-word processing difficulty, 

syntactic analyses are still at best a proxy for utterance interpretations. That is, comprehension is 

not about deriving a structural analysis of a sentence per se, but about recovering a ‘situation 
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model’-like representation of utterance meaning, which may also go well beyond the literal 

propositional content conveyed by an utterance (Johnson-Laird, 1983; Van Dijk & Kintsch, 

1983; Zwaan & Radvansky, 1998). For instance, understanding a simple sentence such as “John 

is sleeping.”, presumably does not just involve extracting the proposition sleep(john), but 

may also include the ‘world-knowledge’-driven inferences such as wear(john,pyjamas), 

in(john,bed), and time_of_day(night). Moreover, accumulating evidence shows that 

world knowledge affects word processing difficulty above and beyond linguistic experience 

alone (see Warren & Dickey, 2021, Venhuizen et al., 2019, and the references therein). Hence, 

for Surprisal Theory to scale up, models should be developed in which comprehension involves 

recovering rich ‘situation model’-like utterance meaning representations capturing ‘world-

knowledge’-driven inferences, rather than deriving syntactic analyses alone, and online 

processing in these models should be sensitive not only to the likelihood of syntactic analyses 

based on linguistic experience, but also to the likelihood of utterance meanings, based on 

knowledge about the world. 

Venhuizen, Crocker, and Brouwer (2019) have recently proposed such a model of 

“comprehension-centric” Surprisal. Their model is a three-layer Simple Recurrent neural 

Network (recall Figure 3) that processes sentences on a word-by-word basis, and incrementally 

recovers a ‘situation model’-like utterance meaning representation (Frank et al., 2003, 2009; 

Venhuizen et al., 2019, 2021). The building blocks for these meanings representations are 

vectors for atomic propositions, such as sleep(john) and walk(mary), which can be 

combined into vectors of propositions of arbitrary complexity using logical operations. That is, 

the meaning of atomic and complex propositions is defined relative to a number of observations 

of states of affairs in the world, in which a proposition is either true or false. Indeed, 
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propositional meaning is thus defined in terms of co-occurrence relative to these observations of 

states of affairs, which serve as cues towards determining the truth-conditions of a logical 

expression. This approach is analogical to how linguistic contexts offer cues for determining 

lexical meaning in distributional lexical semantics (see Lenci, 2018, for a review), but 

importantly supports the representation of arbitrarily complex compositional meanings. These 

meaning representations are inherently probabilistic as well. That is, as the number of 

observations relative to which the meaning of a proposition is defined grows, the fraction of 

observations in which the proposition is true increasingly approximates its probability in the 

world. Given the logical nature of these representations, the probability of two propositions co-

occurring, as well as the conditional probability between propositions directly derives from the 

vector representations, thereby allowing for ‘world knowledge’-driven inferences (see 

Venhuizen et al., 2021, for details). 

Taken together, a finite set of atomic propositions, and a finite set of observations that 

describe the state of each of these propositions in terms of their truth or falsehood, thus define a 

meaning space that is inherently probabilistic, which allows for “world knowledge”-driven 

inferences and the compositional derivation of complex propositions (see Venhuizen et al., 2021 

for a detailed exposition). Ideally, this meaning space should capture the structure of the world in 

terms of hard co-occurrence constraints (e.g., certain propositions can be true at the same time) 

as well probabilistic co-occurrence constraints (e.g., certain propositions are more likely to co-

occur than others). To illustrate this, Venhuizen and colleagues constructed such a meaning 

space by deriving 150 observations from a high-level description of the world, covering forty-

five atomic propositions pertaining to activities on a night out on the town: e.g., 

enter(beth,cinema), order(beth,popcorn), enter(thom,restaurant), and 



Computational Psycholinguistics        25 

so forth. They then trained their SRN to map sentences, on a word-by-word basis, onto their 

corresponding sentence-final meaning representation, that is, a vector representing atomic or 

complex propositional meaning. As certain sentence-prefixes may overlap (e.g., “thom entered 

[bar/restaurant]”), the model will produce vectors at sentence-intermediate words that lie at the 

crossroads of potential sentence-final meanings. In other words, comprehension in the model is 

effectively word-by-word navigation through meaning space. Figure 4 visualizes this 

comprehension as meaning space navigation process in three-dimensional space (using multi-

dimensional scaling). Given the sentence-initial word “thom”, the model moves towards a 

(colored) point in space that is in between all potential sentence-final meanings (gray points). 

Upon encountering the next word “ordered”, the model then moves in the direction of sentence-

final meanings pertaining to order(thom,[...]), and so forth, until the sentence-final word 

is reached upon which sentence-final meaning will be recovered.  
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Figure 4: Three-dimensional visualization of comprehension as meaning space 

navigation. 

 

Crucially, as can be seen in Figure 4, certain words trigger larger movements through 

meaning space than others (compare “water” to “champagne”). In general, words that trigger 

larger movements can be thought of as inducing a less expected shift in meaning than words that 
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trigger smaller movements; that is, prior to processing a next word, the model will be in a state 

that is closer to more expected continuations than to more unexpected ones. Venhuizen et al. 

harness the probabilistic nature of the meaning space to quantify this ‘comprehension-centric’ 

notion of expectancy by defining the surprisal induced by a word wt as the negative log 

probability of the meaning as constructed by the model after processing wt, the activation pattern 

produced at the output layer of the model at t, given the meaning prior to encountering word wt, 

the activation pattern produced at the output layer at t-1: 

 

(Eq 4) 𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙(𝑤-) 	= 	−𝑙𝑜𝑔𝑃(𝑜𝑢𝑡𝑝𝑢𝑡-	|	𝑜𝑢𝑡𝑝𝑢𝑡-$#) 

 

The numbers in Figure 4 show that given the interpretation constructed after processing 

the sentence-initial fragment “thom ordered [...]”, ‘comprehension-centric’ surprisal is higher for 

“water” (.70) than for “champagne” (.62). Note that while this notion of ‘comprehension-centric’ 

surprisal is indeed closely related to distance in meaning space, they are not strictly the same 

thing mathematically. Finally, as the model navigates the meaning space on a word-by-word 

basis, this notion of ‘comprehension-centric’ surprisal is effectively similar to KLD over 

syntactic analyses; the processing of a word potentially prunes away sentence-final meanings, 

and the more probability mass is pruned a way, the higher surprisal. Importantly, Venhuizen et 

al. (2019) trained the model such that it is exposed to certain sentences more frequently than 

other sentences (linguistic experience), and such that certain sentences are mapped onto 

meanings that are more probable in the meaning space than other meanings (world knowledge). 

Their simulations demonstrate that the model combines cues from these information sources, 

balancing them according to their relative strengths. 
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To illustrate, consider the following ‘comprehension-centric’ surprisal-based account of 

the reduced relative clause ambiguity (1a), which induces increased processing effort relative to 

its unreduced counterpart (1b). Prior to encountering the disambiguating main verb “smiled”, 

sentence (1a) is compatible with a meaning in which either the proposition 

send(florist,flowers) or in which receive(florist,flowers) is inferred.  

Here, world knowledge will dictate that florists are more likely to send rather than receive 

flowers, thereby biasing towards the interpretation in which send(florist,flowers) 

holds. Linguistic experience, in turn, may support this bias, as noun phrases in subject position 

are most often followed by the main verb, and tend to be agents of that verb. Upon encountering 

the main verb “smiled”, however, this bias is disconfirmed, and the model needs to rule out the 

proposition send(florist,flowers) by inferring its negation 

!send(florist,flowers), and draw the inferences that 

receive(florist,flowers) and that smile(florist). Indeed, this involves pruning 

away a high probable point in meaning space and moving towards a less probable one. Crucially, 

this is not necessary in (1b) where the relative pronoun “who” informs the model to adopt such a 

relative clause analysis immediately. Hence, depending on whether or not the model has 

encountered the relative pronoun “who”, it will find itself in a different place in meaning space 

prior to encountering the main verb “smiled”. Consequently, the surprisal induced by “smiled” in 

(1a) will be higher than in (1b), because in (1a) it will trigger a less likely transition in meaning 

space than in (1b). This increased processing cost at “smiled” in (1a) will be reduced, however, if 

the sentence-initial noun phrase is replaced with a good recipient for “the flowers”, like “the 

performer” (1c), since receive(performer,flowers) will be much more likely than  



Computational Psycholinguistics        29 

receive(florist,flowers). In this case world knowledge will bias the model towards a 

reduced relative interpretation, even when no explicit relative pronoun is present. 

In sum, word-by-word, incremental sentence comprehension in the Venhuizen et al. 

model can be conceptualized as word-by-word meaning space navigation. Both the linguistic 

experience of the model and the world knowledge contained within the meaning space, influence 

how precisely the model traverses the meaning space during processing. At any point in 

processing, more frequent sentence continuations (linguistic experience) and more probable 

meanings (world knowledge) are favored over less frequent sentence continuations and 

improbable meanings. Moreover, if linguistic experience and world knowledge are in conflict, 

their relative weightings will determine model behavior. Surprisal in the model is 

‘comprehension-centric’ and derives directly from the probabilistic meaning representations that 

the model constructs. Higher surprisal ensues when an incoming word induces a less expected 

change in utterance meaning, while a more  likely change leads to lower surprisal. 

 

5. A Neurobehavioural Model of Sentence Comprehension 

The ‘comprehension-centric’ notion of surprisal proposed by Venhuizen et al. (2019) predicts 

that processing cost is directly related to the word-by-word updating of an unfolding utterance 

interpretation. An open question, however, is how this processing cost is reflected in the different 

neurophysiological and behavioral indices of processing difficulty, in particular the N400 

component and the P600 component of the ERP signal, as well reading times (henceforth RTs). 

Brouwer, Delogu, Venhuizen, and Crocker (2021) have recently proposed an explicit 

neurocomputational model that addresses this question. The core of this model is a 
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neurocomputational instantiation of the Retrieval-Integration account of the N400 and the P600 

in language comprehension (Brouwer et al., 2017). 

On the Retrieval-Integration account, the N400 component of the ERP signal – a negative 

deflection that reaches maximum amplitude at around 400ms post word onset – reflects the 

retrieval of the meaning of an incoming word from long-term memory. This retrieval is 

facilitated, leading to a reduction in N400 amplitude, when word meaning is primed by lexical 

and/or contextual cues; for instance, continuing “He spread his warm bread with [...]” with 

“socks” leads to a larger N400 than when continuing it with “butter” (Kutas & Hillyard, 1980), 

as the latter is primed to a larger degree than the former. In turn, the P600 component of the ERP 

signal – a positive deflection reaching maximum around 600-800ms post word onset – indexes 

the integration of retrieved word meaning into the unfolding utterance interpretation. P600 

amplitude increases whenever the meaning of an incoming word incurs structural, semantic, or 

pragmatic integration difficulty. The Retrieval-Integration account thus predicts word-by-word 

processing to proceed in retrieval (N400) and integration (P600) cycles, such that in addition to 

an N400-effect, for the contrast “He spread his warm bread with socks/butter”, a P600 effect is 

also predicted indicating difficulty in integrating the meaning of socks into the unfolding 

utterance interpretation. This account contrasts with models in which the N400 is assumed to 

also index integration processes (Baggio & Hagoort, 2011; Rabovsky et al., 2018), as well as 

accounts that link the P600 to syntactic (e.g., Gouvea et al., 2010) or more general conflict 

resolution processes (Rabovsky & McClelland, 2019). 

The Retrieval-Integration account makes the prediction that implausible words may 

nonetheless be highly associated with the sentence context, facilitating retrieval and attenuating 

the N400, while integration difficulty is still predicted to be reflected in the P600. This is 
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precisely the case with the role-reversal example discussed in Section 2, where continuing “The 

hearty meal was [...]” with “devouring” does not elicit an N400, as “devouring” and “devoured” 

are equally primed by the context, but rather produces a larger P600 than continuing it with 

“devoured” (Kim & Osterhout, 2005), as according to our linguistic and world knowledge “the 

hearty meal” is a poor agent for devouring (but is a good patient of “was devoured”). How other 

models explain such findings is considered below. 

The original neurocomputational model instantiating such Retrieval-Integration cycles 

was shown to account for key semantic processing phenomena such as those above, but was 

somewhat limited in coverage due to its use of linguistically impoverished “thematic role”-based 

utterance meaning representations (as discussed previously). In a more recent instantiation of the 

model, Brouwer et al. (2021) replaced these “thematic-role”-based meaning representations with 

the “situation model”-like meaning representations introduced above (Venhuizen et al., 2019). 

The resultant comprehension model recovers “situation model”-like utterance meaning 

interpretations on a word-by-word basis, and produces estimates of the N400, reflecting the 

effort involved in retrieving word meaning, the P600, indexing the work involved in integrating 

the retrieved word meaning into the unfolding utterance interpretation, as well as of surprisal, 

reflecting the likelihood of the change in utterance meaning induced by a word. 
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 Figure 5: Schematic illustration of the neurocomputational model. Reproduced with 

permission (CC BY) from Brouwer et al. (2021). 

 

 The architecture of this model, depicted in Figure 5, is effectively an extended SRN: 

input ↦ retrieval ↦ retrieval_output ↦ integration ↦ integration_output, in which both the 

retrieval and integration layer receive additional input from an integration_context layer that 

contains the activation pattern of the integration layer at timestep t-1. The model processes 

sentences on a word-by-word basis, and mechanistically, the processing of a word wt can be 

conceptualized as a function process(word form, utterance context) ↦ utterance representation, 

which maps an acoustic or orthographic word form, and the utterance context as established after 
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processing words w1...wt-1, onto an utterance representation, an interpretation spanning word  

w1...wt. 

N400. This mapping from word form onto an utterance representation does, however, 

involve an intermediate representation;  that is, in line with the Retrieval-Integration account, it 

is assumed that a word form is first mapped onto word meaning while taking the utterance 

context into account: retrieve(word form, utterance context) ↦ word meaning. This retrieve 

function, which is assumed to underlie the N400 component of the ERP signal, is implemented 

by the first part of the SRN: input ↦ retrieval ↦ retrieval_output, which maps localist word 

form representations (input) onto distributed lexical-semantic word meaning representations 

(retrieval_output), while taking utterance context into account (integration_context). The 

retrieval layer effectuates this mapping, and N400 amplitude is estimated as the degree to which 

the activation pattern of this layer changes as the result of processing an incoming word wt:    

 

(Eq 5) N400(𝑤-) 	= 	𝑑𝑖𝑠𝑡(𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙- , 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙-$#) 

 

where 𝑑𝑖𝑠𝑡(𝑥, 𝑦) 	= 	1.0	 − 	𝑐𝑜𝑠(𝑥, 𝑦). Estimated N400 amplitude will be small if the model 

finds itself in a state in which the meaning of 𝑤- is expected, as this will induce little change in 

the activation pattern of the retrieval layer from t-1 to t. By contrast, if it is in a state in which 

the meaning of 𝑤- is less expected, this will induce a larger change in the activation pattern of 

the retrieval layer, and consequently estimated N400 amplitude will be larger.  

P600. Retrieved word meaning is subsequently integrated with the utterance context to 

produce an updated utterance representation, which can be conceptualized as the function 

integrate(word meaning, utterance context) ↦ utterance representation. This integrate function 



Computational Psycholinguistics        34 

is hypothesized to underlie the P600 component and is implemented by the remainder of the 

SRN: retrieval_output ↦ integration ↦ integration_output, which maps the distributed 

lexical-semantic word meaning representation (retrieval), and the utterance context 

(integration_context), onto an updated utterance representation (integration_output). Here, the 

integration layer is responsible for this mapping, and P600 amplitude is therefore estimated as 

the degree to which the activation pattern at this layer changes as a result of processing a word 

wt: 

 

(Eq 6) P600(𝑤-) 	= 	𝑑𝑖𝑠𝑡(𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛- , 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛-$#) 

 

If the interpretation resulting from integrating word 𝑤- is expected, given the input history of the 

model as well as the world knowledge contained within the meaning space, the activation pattern 

in the integration layer will change little from t-1 to t, and estimated P600 will be small. If on 

the other hand, the resultant interpretation is less expected, a larger change in the activation 

pattern will ensue, and estimated P600 amplitude will be larger (also see Crocker et al., 2010). 

Surprisal. Finally, like in the Venhuizen et al. (2019) model, surprisal is estimated as the 

negative log probability of the utterance meaning as constructed by the model after processing a 

word wt -- that is, from the utterance representation produced at the integration_output layer -- 

given the utterance meaning as understood by the model prior to encountering wt: 

 

(Eq 7) 𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙(𝑤-) 	= 	−𝑙𝑜𝑔𝑃(𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑜𝑢𝑡𝑝𝑢𝑡-	|	𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑜𝑢𝑡𝑝𝑢𝑡-$#) 
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Indeed, the model predicts a close link between the P600 and surprisal, where P600 amplitude 

indexes the work involved in updating an utterance meaning representation from t-1 to t, and 

surprisal the likelihood of the resultant change in meaning. 

 To further evaluate the predictions of the model, Brouwer et al. (2021) modeled the N400 

and P600 findings from a recent study by Delogu, Brouwer, and Crocker (2019), as well as the 

reading time data from a self-paced reading paradigm replication of this study in terms of 

surprisal. The design of this study differentially manipulated retrieval and integration difficulty 

through association and plausibility, respectively, while also avoiding the anomalous nature of 

the role-reversal evidence discussed above. When only plausibility is manipulated (“John 

[left/entered] the restaurant. Before long he opened the menu”) – “menu” is semantically 

associated with “restaurant”, but unlikely to be opened after having left versus entered a 

“restaurant” – a P600-effect ensues at “menu”, reflecting increased integration difficulty, while 

the association results in no N400 effect being elicited. By contrast, when both association and 

plausibility are manipulated (“John entered the [apartment/restaurant]. Before long he opened the 

menu”) – “menu” is both unassociated with “apartment” and unlikely to be opened in an 

“apartment” – an N400-effect is produced, reflecting increased retrieval difficulty, and this is 

followed by an occipitally-distributed P600-effect, reflecting increased integration difficulty.3 In 

a simulation of this experiment, the model was shown to predict the same pattern of estimated 

ERP effects. Behaviorally, in turn, all contrasts increased RT at the target word (as well as in the 

 

3 This P600 effect is both stronger, and centro-parietally distributed, after correcting for spatiotemporal component 

overlap that arises due to a large N400 effect masking a subsequent P600 effect (Brouwer et al., 2021). In a follow-

up study, Delogu et al., (2021) further confirm the presence of such a centro-parietal P600-effect for integration 

difficulty, when there is no confounding N400 difference preceding the predicted P600 effect. 
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spillover region). Following Hale (2001) and Levy (2008), the surprisal estimates of the model 

are taken to correspond to RTs.  Crucially, the model also predicts the pattern of increased RTs 

for all contrasts. In sum, the neurocomputational model correctly predicted the N400-effects, 

P600-effects, and RT results, and confirmed the predicted relationship between the P600 and 

surprisal. 

 The implications of these modeling results extend well beyond this one particular study. 

First, the neurocomputational model offers a general, integrated algorithmic level account with 

explicit linking hypotheses to the N400, the P600, and surprisal/RTs in language comprehension, 

that is sensitive to probabilities manifest in both linguistic experience and knowledge about the 

world. Several neurocomputational models have focused on modeling the lexical retrieval 

processes underlying the N400 component alone based on evidence from the processing of 

words in isolation (e.g., Laszlo & Plaut, 2012; Rabovsky & McRae, 2014). These models 

provide important mechanistic explanations for a wide spectrum of lexical properties known to 

influence the N400, such as frequency, orthographic neighborhood size, and semantic 

relatedness, which offer furthers support for the view that the N400 is indeed an index of lexical 

retrieval processes. These mechanistic accounts are similar in nature and fully consistent with the 

instantiation of retrieval in the neurocomputational instantiation of the Retrieval-Integration 

model, which in its current form is focused on the additional contribution of sentence-level 

expectancy to retrieval processes. 

 Two more recent models have focused on modeling sentence level comprehension. In 

contrast to recovering a rich meaning representation, however, one model uses next word 

prediction as a proxy for comprehension (Fitz & Chang, 2019), rendering a direct comparison to 

proper comprehension models difficult. The other model is a comprehension model in which the 
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N400 is an index of the “quasi-compositional” mapping of sentences onto “sentence gestalt” 

representations (Rabovsky et al., 2018; Rabovsky & McClelland, 2019). Crucially, this quasi-

compositional mapping is effectively “good enough” semantic integration, and the N400 

amplitude induced by a word is a function of the degree to which the updated “sentence gestalt” 

is expected. On this model, the absence of an N400-effect for the plausibility-only manipulation 

(“John [left/entered] the restaurant. Before long he opened the menu”) in the Delogu et al. data 

would be accounted for by (temporarily) misunderstanding “left” as “entered” in the sentence 

prior to the target sentence, presumably because of the strong semantic association/attraction 

between “menu” and “restaurant”. While not explicitly part of their computational model, 

Rabovsky and McClelland (2019) suggest the P600 is a “more-controlled attention-dependent 

process” that subsequently resolves this temporary misunderstanding, correctly predicting the 

P600-effect for “John [left/entered] the restaurant. Before long he opened the menu”. 

Importantly, however, their model predicts only an N400-effect for “John entered the 

[apartment/restaurant]. Before long he opened the menu”, which is problematic as a P600-effect 

is also present for the latter contrast as discussed above. Finally, the contrast “John [entered/left] 

the restaurant. Before long he opened the umbrella”, produces a P600-effect and no N400-effect 

(Delogu et al., 2021). As there is no semantic association/attraction between “restaurant” and 

“umbrella”, it is unclear why “entered” should be misunderstood as “left” when reading the first 

clause, and hence how this result can be reconciled with the Rabovsky and McClelland account .  

Given that the meaning representations that the Retrieval-Integration model recovers 

during comprehension derive from propositional co-occurrence, the coverage of the model can 

be scaled far beyond what is possible with simple, slot-based thematic-role assignment 

representations (cf. Crocker et al., 2010, Brouwer et al., 2017, Rabovsky et al., 2018, but see 
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Rabovsky et al., 2021, for an approach to scaling the sentence-gestalt approach). Hence, the 

model not only has broad coverage of neural and behavioral processing indices, but also in terms 

of the processing phenomena that it can capture; that is, the model is capable of capturing N400, 

P600, and surprisal/RT modulations driven by syntactic, semantic, and pragmatic aspects of 

incremental, word-by-word comprehension.  

 Secondly, the model also bridges the gap to functional-neuroanatomic models of 

language processing; that is, Brouwer et al. (2017) show how their neurocomputational model -- 

and thereby the model discussed above -- aligns with a minimal cortical processing network 

instantiating Retrieval-Integration cycles. This cortical network, depicted in Figure 6, is centered 

around two cortical epicenters or hubs --- the left posterior Middle Temporal Gyrus (lpMTG; 

Brodmann Area; BA 21) and left Inferior Frontal Gyrus (lIFG; BA 44/45/47) --- which are 

assumed to be core nodes in larger networks, serving as critical gateways for the integration of 

information from various sub-networks (see Brennan et al., 2020 for recent modeling evidence 

consistent with such a central role for these areas). More specifically, the lpMTG is taken as an 

epicenter/hub for Retrieval and is therefore the core generator of the N400 component. 

Integration, in turn, is subserved by the lIFG, and activity in this area is the presumed core 

generator of the P600 component. The lpMTG and the lIFG are wired together through white 

matter tracts in the dorsal pathway (dp) and the ventral pathway (vp). Figure 6 shows the 

alignment of the neurocomputational model to this cortical network. Depending on the input 

modality, incoming words enter the system through either the auditory cortex (ac) or the visual 

cortex (vc), corresponding to the input layer in the model. The lpMTG then serves to retrieve the 

meaning of an incoming word, while taking the unfolding context into account (lIFG ↦ lpMTG 

via either dp or vp), thereby generating the N400. The lpMTG aligns with the retrieval and 
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retrieval_output layers of the model, of which the former generates an N400 estimate, and 

receives the unfolding context through the recurrent projection from the integration layer.4 

Retrieved word meaning is then projected to the lIFG (lpMTG ↦ lIFG via either dp or vp), 

where it is integrated into the unfolding utterance interpretation, thereby generating the P600. 

The lIFG, in turn, aligns with integration and integration_output layers, of which the former 

generates a P600 estimate. 

 In sum, the neurocomputational model outlined above, 1) offers an integrated account of 

the N400, P600, and surprisal/RTs in incremental, word-by-word comprehension, 2) has the 

potential to scale up to a wide range of syntactic, semantic, and pragmatic processing 

phenomena, and 3) connects computational models of comprehension to functional-

neuroanatomy, thereby paving way for an even more integrated investigation of language in the 

brain. 

 

 

 

4 Note that a shorthand notation is used for recurrent projections from integration ↦ integration and integration ↦ 

retrieval, and omit the integration_context layer from the figure. 
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Figure 6: Alignment of the Neurocomputational Model to a minimal cortical network. 

Reproduced with permission from Brouwer et al. (2017, CC BY-NC), Brouwer et al. (2021, CC-

BY), and Delogu et al. (2019, CC BY-NC-ND). 

 

6. Conclusion 

Models of human language comprehension seek to explain how people map the linguistic signal, 

word-by-word, into a representation of the intended meaning. Despite the complexity and 

ambiguity inherent in this task, it is something people mostly do effortlessly. While early 

theories were shaped by those situations in which people have difficulty – positing architectures 

and strategies aimed to limit demands on working memory or limit the influence of diverse 

information sources – there is increasing agreement that the language comprehension system can 

be viewed as rational. That is, in general, people rapidly deploy their prior experience with 

language and their knowledge of the world to probabilistically distribute their attention across 

possible interpretations of the unfolding utterance. 
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Thus, while many computational models have been proposed, the last twenty years have 

witnessed increasing consensus – at least at Marr’s computational level – that the comprehension 

system seeks to maximize the likelihood of recovering the correct interpretation. This in turn has 

led to a linking hypothesis, Surprisal Theory, in which expected words are easier to process than 

unexpected ones. The range of phenomena that can be accounted for by surprisal is considerable, 

but this success is somewhat mitigated by the causal bottleneck – many different probabilistic 

mechanisms can yield accurate conditional word probabilities, including many that make no 

attempt to comprehend language, such as language models trained to simply predict the next 

word. Indeed, due to their simplicity and ease of training, such models often can provide a 

superior fit to empirical measures, but nonetheless say little about the actual comprehension 

mechanism that yields those measures. This emphasizes the point that modeling empirical 

measures must be secondary to modeling the task in question, namely language comprehension. 

 To this end a recent model was presented in more detail, which (a) utilizes rich 

probabilistic meaning representations that go beyond conventional syntactic parsing models, and 

further incorporate the influence of world knowledge, (b) implements an expectation-driven 

model in which surprisal is viewed as being “meaning-centric” measure of how difficult it is to 

integrate the current word into the unfolding representation of the utterance, and (c) provides 

transparent, mechanistic linking hypotheses to three distinct dependent measures that 

differentially index lexical retrieval (N400), semantic integration (P600), and overall cognitive 

effort (reading times) – each in a manner that is consistent with the expectation-driven nature of 

the system as whole, instantiating surprisal theory. More generally, this serves to illustrate how 

progress in cognitive modeling of language can benefit from combining rational theorizing about 

what the system computes and what kinds of representations are needed, with explicit links to 
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multiple behavioral and neurophysiological empirical measures that differentially index the 

processes that recover those representations. Only by bringing to bear this combination of 

rational and empirical approaches to constrain and inform computational models and theories 

will it be possible to converge on closer approximations of the human language comprehension 

system.  
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