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Abstract: Decades of studies trying to define the extent to which artificial neural networks can exhibit
systematicity suggest that systematicity can be achieved by connectionist models but not by default.
Here we present a novel connectionist model of sentence production that employs rich situation
model representations originally proposed for modeling systematicity in comprehension. The high
performance of our model demonstrates that such representations are also well suited to model
language production. Furthermore, the model can produce multiple novel sentences for previously
unseen situations, including in a different voice (actives vs. passive) and with words in new syntactic
roles, thus demonstrating semantic and syntactic generalization and arguably systematicity. Our
results provide yet further evidence that such connectionist approaches can achieve systematicity, in
production as well as comprehension. We propose our positive results to be a consequence of the
regularities of the microworld from which the semantic representations are derived, which provides
a sufficient structure from which the neural network can interpret novel inputs.

Keywords: systematicity; compositionality; compositional generalization; deep learning; semantics;
neural networks; sentence production; language production; language generation; generalization

1. Introduction

During language comprehension, utterances are mapped to their meaning and vice
versa during language production. An important challenge is that the number of utterances
of a language, and meanings that can be represented, is infinite. Consequently, we cannot
memorize all possible utterances/meanings. From a finite set of utterances to which we
are exposed during language acquisition, we can generalize and produce/comprehend an
infinite number of utterances [1].

Systematicity refers to this ability to generalize from known instances to novel ones,
profiting from the regularities between them, in a manner similar to how (rule-based)
symbolic functions operate over variables, processing uniformly or systematically the
variables of the same type. This has been proposed to be ubiquitous in human cognition,
and it is even a law of cognitive systems [2,3]. Other ways to refer to this notion are
“compositionality” and “compositional generalization”.

Fodor and Pylyshyn [2] started a debate arguing that connectionist cognitive models
(i.e., models implementing artificial neural networks) cannot behave systematically, and
even if they could, they would need to implement a symbol system, similar to the one pro-
posed by the Language of Thought Hypothesis [4], where the cognitive system consists of
rules operating over symbols, with combinatorial dynamics and internal hierarchical struc-
ture. In that case, connectionist models are reduced to descriptions at the implementational
level of analysis, with little to no explanatory value at the algorithmic level [5].

Since the beginning of this debate, proponents of connectionism have argued that
connectionist models can exhibit systematicity (for a review, see [6]), from a theoretical
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point of view (e.g., [7,8]) and empirically (e.g., [9–12]). However, until recently some points
of the debate still remain open, including the extent to which connectionist models can
exhibit systematicity and under which circumstances systematic behavior is expected as an
implication of the cognitive architecture and not just as a mere coincidence.

Although nowadays it is evident that connectionist models can generalize, it has
been argued that they do not show a level of generalization or systematicity comparable
to humans, and that is why modern deep learning models require such vast amounts
of training, in contrast to humans, to learn certain tasks [13]. In order to operationalize
and measure systematicity, Hadley [14] proposed to define it in terms of learning and
generalization, where a neural network behaves systematically if it can process inputs for
which it was not trained. Then, the level of systematicity depends on how different the
training items are from the test items. Along this line, Hadley [14,15] proposed that human
level systematicity is achieved if the model exhibits semantic systematicity: the ability to
construct correct meaning representations of novel sentences.

In this context, many language comprehension models have been proposed (e.g., [16–22]).
Of particular relevance for our purposes is the approach of Frank et al. [23], which devel-
ops a connectionist model of sentence comprehension that is argued to achieve semantic
systematicity. Their model takes a sentence and constructs a situation vector, according to
the Distributed Situation Space model (DSS, [23,24]). Each situation vector corresponds to a
situation model (see [25]) of the state-of-affairs described by a sentence, which incorporates
“world knowledge”-driven inferences. For example, when the model processes "a boy plays
soccer", it does not only recover the explicit literal propositional content, but it also constructs
a more complete situation model, in which a boy is likely to be playing outside, on a field,
with a ball, etc. In this way, it differs from other connectionist models of language processing,
that typically employ simpler meaning representations, such as case-roles (e.g., [26–29]).
Crucially, Frank et al. [23]’s model generalizes to sentences and meaning representations that
it has not seen during training, exhibiting different levels of semantic systematicity.

Frank et al. [23] explain the reason for the development of systematicity to be the
inherent structure of the world from which the semantic representations are obtained
(similar to [19]). Hence, systematicity does not have to be an inherent property of the
cognitive architecture but rather a property of the representations that are used. In this
way, the model addresses the systematicity debate, providing an important step towards
psychologically plausible models of language comprehension.

In this paper, we investigate whether the approach of Frank et al. [23] can be applied to
language production. We present a connectionist model that produces sentences from these
situation models. We test whether the model can produce sentences describing situations
for which a particular voice was not seen during training (passive vs. active), i.e., exhibiting
syntactic systematicity, and further, whether the model can produce sentences for semantic
representations that were not seen during training, i.e., exhibiting semantic systematicity.
Additionally, we test whether the model can produce words in syntactic roles with which
they were not seen during training. Finally, we test whether the model can produce
sentences describing situations that are not allowed by the rules that generated the semantic
representations (i.e., impossible or imaginary situations).

The results of testing active vs. passive show that the model successfully learns to
produce sentences in all conditions, demonstrating systematicity similar to [23]. Fur-
thermore, the model is not only able to produce a single novel sentence for a novel
message representation, but also it can typically produce all the encodings related to
that message. Concerning the production of words in novel syntactic roles, the model
is able to produce in most cases the expected patterns but more so when there are no
alternative ways of encoding the semantics. Nonetheless, when the model is queried
to produce sentences describing impossible situations, the model completely fails to
produce such sentences and instead produces similar sentences describing plausible
scenarios. The dataset and code to train/test our sentence production model can be
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found here: https://github.com/iesus/systematicity-sentence-production (accessed on
11 August 2021).

Finally, we elaborate on the nature of the input representations as well as the mapping
from inputs to outputs. In both cases, and like Frank et al. [23], we argue that regularities
between representations are necessary for a systematic behavior to emerge.

The structure of this paper is as follows: Section 2 introduces the Distributed Situation
Space as described by Frank et al. [23]. Section 3 presents the model of language production
and its architecture. Sections 4–6 present each different testing conditions and their results.
Finally, Sections 7 and 8 present respectively the discussion and conclusion.

2. The Distributed Situation Space Model

The DSS model [23,24] represents the meaning of events with respect to a microworld,
which consists of a small set of interacting entities and which is structured in the sense that
there are probabilistic constraints on event co-occurrence (see Venhuizen et al. [30], for a
recent derivation of the DSS model in formal semantic theory).

Paired to a microworld, a microlanguage generates sentences expressing information
about events in the microworld. With these elements, pairs (sentence,semantics) are ob-
tained, corresponding to the (input,output) of the comprehension model of Frank et al. [23]
and the (output,input) of the language production model presented here. For our simula-
tions we use the same microworld and microlanguage defined by Frank et al. [23], which
we will briefly describe.

2.1. Microworld

In the microworld of Frank et al. [23], there are three people (two girls and one boy),
four places, three games and three toys, as shown in Table 1. At any time, people can be
located in one of the 4 places and play a game or with a toy. There are two manners of
playing and two manners of winning. By combining each of the five predicates with their
possible arguments, 44 basic events—the smallest units of propositional meaning in that
world—can be constructed (e.g., play(charlie,chess), win(sophia), place(heidi,bathroom)).
These 44 basic events fully describe the state of affairs of the microworld at any point.

Table 1. Concepts in the microworld of Frank et al. [23].

Class Variable Class Members (Concepts) #

People p charlie, heidi, sophia 3
Games g chess, hide_and_seek, soccer 3

Toys t puzzle, ball, doll 3
Places x bathroom, bedroom, playground, street 4

Manners of Playing mplay well, badly 2
Manners of winning mwin easily, difficultly 2

Predicates - play, win, lose, place, manner 5

The microworld is structured in the sense that there are probabilistic constraints on
event co-occurrence, which can be divided into four categories. From each category we
only mention the most salient, for further details see Section 2 of Frank et al. [23]:

• Personal characteristics: Each person tends to play a particular game and with a
particular toy. For example, Charlie likes playing chess, Sophia likes soccer and Heidi
likes hide and seek. In addition, each person tends to be in some locations more often
than others.

• Games and Toys: Each game/toy can be played only in certain locations. For instance,
soccer can only be played in the street and a puzzle can only be played with in the
bedroom. Some games/toys demand a specific number of participants, like chess that
needs exactly two players.

https://github.com/iesus/systematicity-sentence-production
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• Being There: Each person can only be in one place at a time. If someone plays hide
and seek in the playground, all players are in the playground and the two players of
chess are in the same place.

• Winning and Losing: People cannot win and lose at the same time, and there cannot
be more than one winner. If someone wins, all other players lose, and if there is a loser,
there must be a winner.

2.2. Situation Space Matrix

More formally, a microworld is defined by K basic events. One observation of the
microworld is encoded by setting the basic events that are True in that observation to 1 and
the rest to 0 (False). Thus N observations are sampled with a non-deterministic procedure
in order to construct a K× N Situation Space matrix (see Table 2). This sampling occurs such
that no observation violates any microworld constraint and such that the N observations
reflect the probabilistic nature of the microworld in terms of the (co-)occurrence probability
of the K basic events.

Table 2. Situation Space matrix. Each row constitutes the situation vector of the corresponding basic
event. Each column is one observation sampled from the microworld.

ob
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n 1
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. . .
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play(charlie,chess) 1 0 0 . . . 1

play(charlie,hide_and_seek) 0 1 0 . . . 1

play(charlie,soccer) 1 1 0 . . . 0

. . . . . . . . . .

manner(win,difficulty) 0 1 0 . . . 0

The resulting situation space matrix is then effectively one big truth table, where
each row is the situation vector of a basic event, encoding its meaning in terms of the
observations in which that basic event is true, which in turn encodes its co-occurrence with
all other basic events. This situation space encodes all knowledge about the microworld,
and situation vectors capture dependencies between observations, thereby allowing for
"world knowledge"-driven inference.

The situation vectors of complex events (combinations of basic events, for example,
play(charlie, chess) ∧ win(charlie)) are constructed through propositional logic, being able
to capture phenomena such as negation, conjunction and disjunction; conversely, complex
events can also capture aspects of modality and quantification.

The situation space of Frank et al. [23] was constructed by sampling 25,000 obser-
vations, yielding a 44× 25,000 matrix (44 basic events) and 25,000-dimensional situation
vectors. To obtain vectors with a more manageable dimensionality, a competitive layer
algorithm was then applied to the situation space matrix to reduce its dimensionality,
yielding a 44× 150 matrix, with 150-dimensional situation vectors. These vectors are the
semantic representations used for their simulations.

2.3. Microlanguage

Events in the microworld are described by sentences obtained from a microlanguage,
which consists of 40 words that can be combined into 13,556 sentences according to the
grammar of Frank et al. [23], which we minimally modified by introducing the words
“a” and “the” and an end-of-sentence marker, leaving 43 words in the vocabulary. The
resulting grammar can be seen in Appendix A.
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During sentence generation, propositional logic semantics are attached to each sen-
tence (see examples in Table 3). These in turn are converted to situation vectors by operating
over the situation vectors of the basic events in the propositional logic semantics.

Table 3. Examples of sentences generated with the microlanguage, paired with the propositional
logic form of the described event.

Sentence Semantics

Charlie plays chess. play(charlie, chess)
chess is played by Charlie. play(charlie, chess)

Sophia plays with a ball in the street. play(sophia, ball) ∧ place(sophia, street)

someone plays with a doll. play(charlie, doll) ∨ play(sophia, doll) ∨
play(heidi, doll)

Charlie loses to Sophia. win(sophia) ∧ lose(charlie)

Sophia beats Charlie at chess. win(sophia) ∧ lose(charlie) ∧
play(sophia, chess)

Charlie wins inside. win(charlie) ∧ (place(charlie, bedroom) ∨
place(charlie, bathroom))

Sophia plays soccer well. play(sophia, soccer) ∧
manner(play(sophia), well)

The grammar generates 13,556 sentences; however, many of them describe situations
that violate the rules of the microworld, consequently having empty situation vectors.
These were removed, leaving 8201 sentences, from which 6782 are in active voice and 1419
in passive.

As we see in the first two examples in Table 3, multiple sentences can be related
to the same semantics. There are 782 unique semantic representations, from which 424
are related to both passive and active sentences. The rest (358) can only be expressed
by active sentences. More concretely, the grammar does not define passive sentences for
situations where the direct object is a person (e.g., “Heidi beats Charlie.”) or unspecified
(e.g., “Charlie plays.”). While we could extend the grammar to define passive constructions
for these situations, it was left as it is in order to inspect the model’s behavior in terms
of generalization.

Grouping together the sentences with the same semantics, separating active from pas-
sive sentences, we built our dataset: 1206 pairs {(DSS1, ϕ1), . . . , (DSS1206, ϕ1206)} where
each DSSi ∈ [0, 1]151 is a situation vector plus a bit indicating whether the pair is related
to active (1) or passive (0) sentences; and ϕi = {sent1, . . . , sentk} where sentj is a sentence:
a sequence of words word1, . . . , wordn, expressing the information in DSSi. Each set ϕi
contains all the sentences that convey DSSi in the expected voice.

2.4. Belief Vectors

As a consequence of the dimensionality reduction of the situation space matrix, some
information is lost. Concerning the microworld of Frank et al. [23], information regarding
adverbial modification, such as “well”, “badly”, “with ease” and “with difficulty”, is no
longer available. Consequently, we use a modified version, which we call belief vectors.
These are derived from the original 44 × 25,000 dimensional matrix and can be regarded as
an alternative way to obtain vectors with reduced dimensionality.

A belief vector is the average state-of-affairs of the microworld, given a (complex)
event E. This is calculated by averaging the state-of-affairs of the observations (among
the 25,000 sampled) in which E is true. The resulting vector has 44 dimensions, each one
associated to a basic event b and with a value equal to the conditional probability of the
basic event, given E (i.e., P(b|E)).

Like the situation vectors of Frank et al. [23], belief vectors are analogous, which
means that the form of the representations depends on what is represented. Additionally,
belief vectors do not incur into the type of information loss that the competitive layer
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algorithm introduces, the dimensionality is lower, and the value of each dimension gives
an intuitive idea of the situation that is being represented.

3. Language Production Model

Our model architecture (see Figure 1) is broadly similar to the one of Frank et al. [23],
with the main difference being that the inputs and outputs are reversed: it maps DSS
representations onto sentences. As Frank et al. [23] point out, this is not intended to model
human language development.

Figure 1. Model architecture.

The model is an extension of a Simple Recurrent Network (SRN [31]). It consists
of an input layer, a 120-units recurrent hidden (sigmoid) layer, and a 43-units (softmax)
output layer. The dimensionality of the input layer is determined by the chosen semantic
representation (150-dimensional situation vector or 44-dimensional belief vector), plus
one bit indicating if the model should produce an active sentence (1) or a passive one
(0). The output layer dimensionality is the number of words in the vocabulary plus the
end-of-sentence marker (43).

Time in the model is discrete. At each time step t, the activation of the input layer dss is
propagated to the hidden recurrent layer. This layer also receives its own activation ht−1 at
time-step t− 1 (zeros at t = 0) through context units. Additionally, the hidden layer receives
the word mont−1 produced at time-step t − 1 (zeros at t = 0) through monitoring units,
where only the unit corresponding to the word produced at time-step t− 1 is activated
(set to 1).

We did not test with more sophisticated architectures such as LSTMs [32] or GRUs [33]
because the focus of this work are the representations used by the model, rather than the
model itself. Consequently, we tried to use the minimum machinery possible aside from
the input and output representations.

More formally, activation of the hidden layer is given by:

ht = σ(Wih · dss + Whh · ht−1 + Wmh ·mont−1 + bh) (1)

where Wih is the weight matrix connecting the input layer to the hidden layer, Whh connects
the hidden layer to itself, Wmh connects the monitoring units to the hidden layer, and bh is
the bias unit of the hidden layer.

Then, the activation of the hidden layer ht is propagated to the output layer, which
yields a probability distribution over the vocabulary, and its activation is given by:

outputt = so f tmax(Who · ht + bo) (2)

where Who is the weight matrix connecting the hidden layer to the output layer and bo is
the output bias unit.
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The word produced at time-step t is defined as the one with highest probability
(highest activation). The model stops when an end-of-sentence marker (a period) has
been produced.

While it is outside the scope of this work, Calvillo and Crocker [34] presents a more
thorough analysis of the internal mechanism of this model using Layer-wise Relevance
Propagation [35].

As an example, Figure 2 illustrates the production of “someone plays badly.”. At time
step t = 0, the DSS representation is fed to the hidden layer, which propagates its activation
to the output layer. The output layer then yields a probability distribution over the vocab-
ulary. In this case, the words “someone” and “a” have high activation. Since “someone”
has the highest activation, it is the word the model produces. At t = 1 , the hidden layer is
fed again with the DSS representation, but this time also the activation of the hidden layer
at t = 0 and the word produced at t = 0 (“someone”). It then propagates its activation to
the output layer, which again yields a probability distribution over the vocabulary. This
time the only activated word is “plays”. At t = 2, the process is repeated but this time the
model activates “badly” and “a”. Since ”badly” has higher activation, it produces “badly”.
Finally, at t = 3, the model produces “.”, which signals the end of production.

Figure 2. Example of sentence production: “someone plays badly .”

Testing for Systematicity

We defined different test conditions where the model must produce a sentence that it
has not seen during training. Depending on its success, and how different the test items
are to the training ones, we can assess the degree to which the model can generalize and
exhibit systematicity.

The model was trained with cross-entropy backpropagation [36] and stochastic gradi-
ent descent (see Appendix B for more details). Each test instance corresponds to giving the
model a DSSi and seeing whether the model can produce one of the related sentences in
ϕi. The test conditions are divided into three sets corresponding to the next three sections:
the first set (Active vs. Passive) tests whether the model can produce sentences in passive
or active voice for a novel semantics. The second set (Words in New Syntactic Roles) tests
whether the model can produce a word in a syntactic role with which that word was not
seen in training. Finally, the third set (Semantic Anomalies) tests whether the model can
produce sentences for situations that violate rules of the microworld.
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4. Active vs. Passive

The dataset contains 782 unique DSS representations of microworld situations. These
were divided in two sets: setAP (n = 424) are situations related to both active and passive
sentences, and setA (n = 358) are situations related only to active sentences in which the
direct object is a person (e.g., “Heidi beats Charlie.”) or unspecified (e.g., “Charlie plays.”),
for which the microlanguage defines no passive sentences. Using this division, we defined
our test conditions, which are outlined in Table 4.

setAP allowed for three conditions:

• 1: The model has seen active sentences, and a passive is queried.
• 2: The model has seen passive sentences, and an active is queried.
• 3: New situations, passive and active sentences are queried.

setA allowed for two testing conditions:

• 4: The model has seen active sentences, and a passive is queried.
• 5: New situations, passive and active sentences are queried.

Table 4. Active vs. Passive Test Conditions.

SetAP SetA

Condition 1 2 3 4 5

Known act pas - act -

Query pas act act/pas pas act/pas

These conditions correspond to different levels of generalization. In all cases, the
queried sentence is new to the model. For Conditions 1, 2 and 4 the model has seen the
situations but not in the queried voice. Importantly, for Conditions 3 and 5, the model has
never seen the situation itself.

From another view, in Conditions 1, 2 and 3, the model has seen similar syntactic and
semantic patterns but not the specific sentences or semantics. In contrast, in Conditions
4 and 5, where a passive is queried, the model must produce a sentence with a voice for
which no example was given during training, not only for that specific semantics but for
that type of semantics.

For these conditions, we applied 10-fold cross-validation, where for each fold, some
items are held out for testing, and the rest are used for training. Thus setAP was randomly
shuffled and split into 10 folds of 90% training and 10% test situations, meaning per fold
382/42 training/test items. For each fold, the test situations were further split into the
three conditions, rendering 14 different test situations per condition, per fold. SetA was
also shuffled and split into 10 folds, but in order to preserve uniformity, for each fold 14
situations were drawn per condition, meaning that each fold contained 28 test and 330
training situations.

For Condition 1, the situations were coupled with their active sentences and incorpo-
rated into the training set (while the passive sentences remained in the test set) and vice
versa for Condition 2. Similarly, for Condition 4 the active sentences were incorporated into
the training set, while during testing the model will be queried for a passive construction.

For each type of semantic representation (150-dimensional situation vectors and 44-
dimensional belief vectors), we trained 10 instances of the model initialized with different
weights, corresponding to each fold as described above. The results reported below are
averages over these instances.

The model was first tested to see if it could produce a single sentence for each test
item. Then, the model was tested to see whether it could produce all the sentences related
to each test item.
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4.1. Quantitative Analysis

As initial production policy, we define the word that the model produces at each time
step as the one with the highest activation in the output layer. Thus, for a DSSi, the model
produces a sentence ŝi describing the state-of-affairs represented in DSSi.

We assume that ŝi is correct if it belongs to the set ϕi of all possible realizations of
DSSi in the queried voice. However, sometimes ŝi does not perfectly match any sentence
in ϕi. As such, we compute the similarity between ŝi, and each sentence in ϕi, using their
Levenshtein distance [37]; which is the number of insertions, deletions or substitutions
that are needed in order to transform one string into another. More formally, Levenshtein
similarity sim(s1, s2) between sentences s1 and s2 is:

sim(s1, s2) = 1− distance(s1, s2)

max(length(s1), length(s2))
(3)

where distance is the Levenshtein distance. This similarity is 0 when the sentences are
completely different and 1 when they are the same. Then, having a sentence produced by
the model ŝi, we compute the highest similarity that one can achieve by comparing ŝi with
each sentence s in ϕi:

For each test item, the model produced a sentence ŝi, which was compared to the
expected ones, rendering the results in Table 5. For Conditions 4 and 5, where the model is
queried a passive sentence, there are no corresponding examples in the dataset.

Table 5. Similarity scores for each test condition ± their standard deviation.

Situation Vector (150-Dim) Belief Vector (44-Dim)

Cond. Query Perfect Match (%) Similarity (%) Perfect Match (%) Similarity (%)

train - 87.5± 1.1 96.9± 0.4 97.4± 2.2 99.2± 1.4

1 pas 70.0± 15.0 92.8± 4.6 92.9± 5.8 98.8± 1.0
2 act 69.3± 15.1 92.1± 5.6 92.1± 7.9 98.4± 1.7
3 act 65.7± 12.5 91.1± 3.5 90.0± 7.7 97.3± 1.9
3 pas 70.0± 6.6 93.7± 2.1 90.7± 9.5 98.2± 1.8
5 act 37.1± 14.6 83.4± 5.3 87.1± 7.4 95.4± 3.4

Average Test 62.4± 14.2 90.6± 4.1 90.6± 2.2 97.6± 1.4

The performance using the 150-dimensional situation vectors can be seen in columns 3 and 4
in Table 5. On average, the model produces perfect sentences for almost two thirds of
the situation vectors. While this may seem modest, we should consider that the situa-
tion vectors went through a dimensionality reduction, after which some information is
lost. Nevertheless, the model achieves a 90.6% similarity score on the test conditions.
Since all sentences generated are novel to the model, this demonstrates the model can
reasonably generalize.

For Condition 5 where active sentences are queried, we see a drop of performance.
This could be because setA contained fewer sentences per situation and therefore fewer
training items.

The performance with belief vectors can be seen in the last two columns in Table 5. The
average similarity across all the test conditions is 97.6% (90.6% of perfect matches), which
is very high and almost perfect in several cases, demonstrating high semantic systematicity.

Given that the errors with belief vectors are much fewer, and that a qualitative analysis
(in the next subsection) shows that the sentences are similar in nature, we continue the rest
of this quantitative analysis using only belief vectors.

Now we test whether the model can produce not only one sentence but all the sen-
tences related to a given situation. Previously, at each time step the word produced was the
one with highest activation. Sometimes, however, multiple words can have high activation,
particularly when they all may be correct continuations of the sentence. In order to explore
these derivations, we redefine the word production policy: at a given time step, the words
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produced are all the words with an activation above a threshold τ. By following all the
word derivations that comply with this, the model can produce multiple sentences for a
given semantics.

In general, τ should be low enough such that the model can derive the range of
possible sentences but not too low so as to avoid overgenerations. We evaluated in terms of
precision and recall several formulations of τ in order to identify the one that reproduces
better all and only the sentences related to the semantic representations in the training
set. The results indicate that τ is rather insensitive to the shape of the output distribution
and that a fixed value may be sufficient (see Appendix C for further details). Indeed, a
maximum f-score value of 92.5% was achieved setting τ = 0.17.

For our experiments, we set τ = 0.12, which has a high recall (98%) and a relatively
high precision (89%). A high recall is preferred in order to produce a relatively large number
of sentences that could give us insight into the production mechanism of the model.

For each condition, the following was done: for each DSSi, we calculated precision,
recall and f-score of the set of sentences produced by the model with respect to the set ϕi;
then, these values were averaged across the DSS representations of the test condition. In
these calculations, only the sentences that fully matched a sentence in ϕi were considered,
discarding partial matches. Finally, these values were averaged across the previously
described 10 folds, giving the results in Table 6.

Table 6. Precision, Recall and F-Score values± their standard deviation obtained on the test conditions.

Cond. Query µ(#Sent)) Perfect(%) Precision (%) Recall (%) F-Score (%)

1 pas 3.3± 3.1 59.3± 15.7 82.2± 11.7 93.8± 3.9 84.0± 8.7
2 act 9.2± 11.3 52.1± 11.1 81.7± 6.8 96.3± 3.0 84.9± 5.2
3 act 7.3± 9.6 51.4± 11.0 78.3± 8.4 93.4± 5.3 81.9± 6.9
3 pas 3.5± 2.8 52.9± 12.9 78.8± 6.1 91.0± 7.0 81.4± 6.9
5 act 8.4± 7.2 63.6± 8.1 83.3± 7.5 94.1± 4.6 84.7± 6.1

Average 6.9± 7.1 55.9± 4.8 80.8± 2.0 93.7± 1.7 83.4± 1.5

The first and second columns in Table 6 show the test conditions and the type of sen-
tence the model must produce. The third column shows the average number of sentences
related to DSSi± its standard deviation. For example, in Condition 2, each DSSi is related
to 9.2 (σ = 11.3) active sentences. In general, the range is quite wide: some representations
are related to one sentence, while others are related to many more, 130 being the maximum.
On average, the model must produce 6.9 (σ = 7.1) encodings per DSSi.

The fourth column in Table 6 shows the percentage of situations where the model
produced all expected sentences without errors, which was the case for more than half
of the representations in all conditions (55.9% on average). Considering only these cases,
the mean number of sentences per situation was 4.7 (sd = 5.3), showing that the model
can reproduce a large number of sentences per semantics without difficulties, sometimes
reproducing up to 40 different encodings without errors.

The last three columns in Table 6 show precision, recall and f-score. In all conditions the
model produced more than 90% of the expected sentences (93.7% on average). Additionally,
the sentences produced were mostly correct (80.8% on average). The value of τ was
chosen such that recall would be high; nonetheless, as we will see shortly, the sentences
overgenerated are semantically very similar to the ones expected, raising again the question
of whether they should be considered errors.

From these results, we see that for more than a half of the situations, the model can
perfectly produce all the related sentences, and even for the situations with errors, the
model can reproduce a large proportion of the expected sentences, even if they are novel,
again demonstrating systematicity.
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4.2. Qualitative Analysis

As before, we analyze first the model’s output in single sentence production, and then we
continue with the case where the model must produce all the sentences related to a semantics.

Inspecting the sentences produced with the two types of representations (situation and
belief vectors), we see that in both cases they are, with only few exceptions, syntactically
correct and in all cases their semantics are, if not fully correct, at least closely related to the
intended semantics.

The dimensionality reduction used to generate the 150-dimensional situation vectors
introduces some information loss: the sentences with adverbial modifiers do not distinguish
between “well” and “badly” and between “ease” and “difficulty”. The errors elicited for
three folds were manually analyzed, finding that out of 82 errors, 34 (41.5%) were related
to modification. The information loss affects also other aspects, causing other error types
but with fewer attestations.

Belief vectors elicited no errors related to adverbial modification. Without these errors,
the sentences obtained using the two kinds of representations are qualitatively similar.
Because of that, and since the errors with belief vectors are much fewer, we focus the
rest of the analysis on the output obtained using belief vectors. However, we expect the
performance using the 150-dimensional situation vectors would be similar to the one using
belief vectors if the dimensionality reduction did not introduce information loss. See [38]
for an alternative dimensionality reduction technique that may well mitigate this loss.

Although the performance with belief vectors is quite high, the model still produces
systematic errors that provide us with insight into its internal mechanism. Because of
that, the errors produced in five folds were manually inspected to see their regularities.
Examples of these are in Table 7.

All the inspected errors occur when the model produces a sentence that is semanti-
cally very similar to the one expected, reproducing patterns of the speech error literature
(e.g., [39]), which states that speech errors involve elements with phonological and/or
semantic similarity. In our case, the model does not operate with phonological information,
and consequently the errors are solely related to semantic similarity. This pattern appears
even when testing with training items, where the model cannot distinguish between some
highly similar situations, even though it has already seen them (Examples 1–3 in Table 7).

The errors observed (35 in total) can be classified into three main categories:

• Underspecification (45.71%): sentences providing correct information but omitting
details (Examples 4–6 in Table 7).

• Overspecification (22.86%): sentences with information that is not contained in the
semantics but that is likely to be the case (Examples 7–9 in Table 7).

• Very high similarity (28.6%): errors related to situations that are remarkably similar
because of the design of the microworld (Examples 10–12 in Table 7).

The model is expected to describe situations assuming that the comprehender has
no contextual information. Thus, a sentence that underspecifies gives less than enough
information to fully describe the intended situation, while a sentence that overspecifies
gives more information than what the semantics contains. It is debatable whether these
should be considered as errors, given that people are not as precise, sometimes being vague
(underspecifying) and sometimes making assumptions under uncertainty (overspecifying).
For uniformity, however, we consider an “error” any difference between the semantics of
the input and the semantics of the sentence produced.
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Table 7. Examples of representative output errors.

Models Output Expected

1 someone plays with a ball outside. a girl plays with a ball outside.
2 someone loses in the bedroom. someone wins in the bedroom.
3 a girl loses to someone in the bedroom. someone beats a girl at a game in the bedroom.

4 Sophia beats Heidi with ease at hide_and_seek. Sophia beats Heidi with ease at hide_and_seek in the
bedroom.

5 a girl plays with a doll inside. Heidi plays with a doll inside.
6 someone plays. someone plays with a toy.

7 Sophia wins with ease at a game in the street. Sophia wins with ease at a game outside.
8 a game is won with ease by a girl in the bathroom. a game is won with ease by someone in the bathroom.
9 Charlie plays a game in the street. Charlie plays in the street.

10 someone wins in the bedroom at hide_and_seek. someone loses in the bedroom at hide_and_seek.
11 Heidi loses to someone in the bedroom at hide_and_seek. someone beats Heidi in the bedroom at hide_and_seek.
12 Sophia beats someone at hide_and_seek in the bedroom. someone loses to Sophia at hide_and_seek in the bedroom.

The errors in the third category are sentences that seem correct at first glance; it is only
after looking deeply into the microworld and the microlanguage that we see the error. First,
in this microworld, whenever there is a winner, there is also a loser, meaning that sentences
that are apparently contradictory (“someone loses.” vs. “someone wins.”) actually have
the same implications and therefore are semantically identical. Second, the winner and
the loser are usually in the same location, except when playing hide and seek, in which
case the loser can be in the bedroom, while the winner could be in the bathroom and vice
versa. Finally, prepositional phrases (e.g., “in the bedroom”) are attached to the subject of
the sentence according to the microlanguage, meaning that in “Heidi beats Sophia in the
bedroom”, Heidi is in the bedroom while Sophia could be in either the bedroom or the
bathroom; similarly, in “Sophia loses to Heidi in the bedroom”, it is Sophia who stays in the
bedroom while Heidi could also be in the bathroom. Apart from this detail, the situations
are almost identical.

So far we see the model can take the linguistic elements learned during training
in order to characterize situations for which it has no experience. The only difficulty
appears to be the distinction of highly similar situations. However, the performance is
very good in general and even for the sentences with an error, the output is largely correct.
Furthermore, these errors serve to further demonstrate systematicity, as they are elicited
precisely because of proximity/similarity in the semantic space, where similar situations
have representations that are close to each other.

We also analyzed manually the output for three folds when the model must produce
all the sentences related to each semantics. We found 391 sentences with errors, which
followed the same patterns and proportions as in single sentence production. Additionally,
since the model explores areas of low probability, a fourth category of errors appeared,
which interestingly seems to coincide with errors found in the literature about human
speech errors, such as repetitions and substitutions [40]; and only four sentences had a
clear syntactic anomaly.

In general, the sentences produced with the most activated words are the best, and as
one goes further away from the most activated words, errors start to appear, first producing
underspecification/overspecification and then repetitions or syntactic errors. Nonetheless, with
only few exceptions, the sentences maintain syntactic adequacy and high semantic similarity.

Finally, when the model produces multiple sentences we can also identify under-
generations, which show what the model preferred not to produce. We compared the
undergenerated sentences, in the same three folds as before, against the ones produced. We
found 38 situations with undergenerated sentences, which in general followed the statisti-
cal patterns of the microlanguage. For example, the location is preferred to be mentioned
at the end. For more details, see Appendix D.
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4.3. Undefined Passive Sentences

For Conditions 4 and 5, where a passive sentence is queried, Table 8 presents examples
of output sentences and the situations that they were supposed to convey. These situations
can be of two types: the first one involving a winning/losing situation where both actors
are explicitly mentioned, and the second type being situations where the object of the
action is unspecified.

We report the case where the model must produce multiple sentences per semantics,
because it gives us a slightly wider view; however, the results are very similar for single
sentence production. As before, we manually analyzed the output for three folds.

Here, the model must produce passive sentences for areas in the semantic space to
which no sentences in the microlanguage are related. Consequently, the model is more
uncertain, activating at each time step more words, producing relatively more sentences.
Most of these follow the semantics; however, productions with low probability contain
errors similar to those previously reported.

Concerning winning/losing situations (77 situations, Examples 1–2 in Table 8), the
object is always a game because in the microworld winning/losing only happens when
playing games. Thus, the model produces the name of the game when it is known (e.g.,
“soccer is. . . ”), otherwise the sentence starts with “a game is. . . ”. Then, one player is
mentioned (one omitted) and the rest of the situation is described.

Table 8. Examples of passive output sentences for DSSs with no passive examples.

Model’s Output Active Sentence

1 hide_and_seek is won with ease by Heidi in the playground. Heidi beats Sophia with ease in the playground at
hide_and_seek.

2 a game is won with ease by Sophia. Sophia beats Charlie with ease.

3 a toy is played with. someone plays.
4 a toy is played with in the playground by Sophia. Sophia plays in the playground.

5 a game is lost with difficulty by Charlie. a girl beats Charlie with difficulty in the street.
6 chess is lost by Heidi in the bedroom. the boy loses to Heidi at chess in the bedroom.
7 Sophia is won with difficulty by Charlie. Sophia beats Charlie with difficulty.

For situations with an unspecified object (seven situations, Examples 3–4 in Table 8),
it is unknown whether the subject is playing a game or with a toy. Most of the time
(four situations), both types of sentences are produced: sentences where “a game” is the
object, and sentences where “a toy” is the object. Apart from this, the sentences follow
the semantics.

Similar to the other conditions, over and underspecification errors occur in Conditions
4 and 5, but are rare (7.14%, Example 5 in Table 8). Two types of error that appear only
for these situations are the inversion of the winning/losing relation in game situations
(39 situations, Example 6 in Table 8) and the mention of the agent at the beginning of the
sentence (12 situations, Example 7 in Table 8).

Although the model exhibits confusion as it explores areas of low probability, it can
still process most information of each input. For these conditions, not only the specific
representations are novel but also the model has never seen this kind of situation coupled
with passive sentences. It is because of the systematic behavior of the model that it can
produce coherent sentences for these areas of the semantic space. A classical symbol model
would have difficulties producing any output, as the grammar rules describing passive
sentences for these situations are simply non-existent in this microlanguage. From this
view, our model can be regarded as more robust and perhaps even more systematic.

5. Words in New Syntactic Roles

The second set of test conditions investigates whether the model can produce words
in syntactic positions relative to a verb to which they were not related during training.
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For example, the model may have seen sentences where the object of “plays” is “soccer”
or “hide_and_seek”, and we test whether the model can produce “Charlie plays chess.”,
where ”chess” has never been seen as the object of “plays”. Thus, while the model has
seen the target syntactic patterns, it has never seen them related to the specific target
words. More concretely, the model must produce the name of a game in the following
syntactic positions:

• Condition 6—Direct Object of “plays”: e.g., having as target “chess”, in training the
model sees sentences such as “someone plays soccer” or “someone wins at chess”, but
not “someone plays chess”.

• Condition 7—Prepositional Object of “loses”: e.g., having as target “chess”, in train-
ing the model sees sentences such as “someone loses at soccer”, “someone loses in the
playground”, but not “someone loses at chess”.

• Condition 8—Subject of “plays”in passive sentences: e.g., having the target “chess”,
the model sees during training “hide_and_seek is played. . . ” or “chess is lost. . . ”, but
not “chess is played ”.

The targets are game names that differ, among other aspects, in the degree to which
they are necessary. For example,“Charlie plays in the street.” implies the game is soccer
because that is the only game that can be played in the street. Therefore, “soccer” can
always be omitted because the street is also the only place where soccer can be played.
Conversely, chess can be played only in the bedroom, which is a place where hide and
seek can also be played; therefore, it is always necessary to name chess. Hide and seek
can be played everywhere except in the street, and it is the only game that can be played
in the playground and the bathroom. Therefore, one can omit naming hide and seek in
the bathroom and playground but not in the bedroom. In sum, naming soccer can always
be omitted, chess is always necessary and hide and seek can be omitted depending on
the location.

For each condition and target, a training/test set is created, where the test set contains
all semantic representations related to at least one sentence with the target pattern, while
the training set contains the rest of the representations.

Results

The model produced multiple sentences for each test item, having τ = 0.12, as before.
We assume the model produced the target if one of the produced sentences contained
the target pattern and conveyed correctly the semantics. For each condition and target,
10 instances with different weight initializations were trained. The results reported in
Table 9 are averages over them.

Column 7 in Table 9 shows the percentage of times the model produced the target for
each condition. For the cases where the target pattern is necessary (the semantics cannot
be conveyed through other linguistic structures), columns 3 and 4 show the number of
test items and the corresponding percentage in which the model correctly produced the
target pattern. Similarly, columns 5 and 6 show the number of items and the percentage in
which the model produced correctly the target pattern for cases in which the pattern is not
necessary, as the semantics can be conveyed through other linguistic structures.

The low scores in condition 7 and hide and seek are because those are the situations
with high semantic similarity as before. Here the model has seen in training sentences
of the form ”X beats Y at hide_and_seek in the bedroom”, which are very similar to ”Y
loses at hide_and_seek in the bedroom” but not the same, as explained before. Due to this
confusion, the model produces wrong sentences, avoiding the target pattern.

The difference between columns 5 and 7 shows a tendency to produce the target
pattern more when there are no alternative ways to encode the semantics. Indeed, in the
absence of competing encodings, the model should be able to explore and produce words
in areas of low probability related to unseen structures. Consequently, for the production
of a novel structure, there should be few competing alternatives, as the model prefers the
more frequent or already seen encodings.
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We see variation depending on whether the target is necessary to encode the situation
or the game that is being played. However, in most conditions, the model can still produce
the target pattern for more than 85% of the situations, showing that the model could
produce words in syntactic positions with which they were not related during training.

Table 9. Results of Conditions 6–8.

Condition Game #nec. %found #unnec. %Found %Total Found

6 plays X
chess 14 85.0± 19.5 - - 85.0± 19.5

hide_and_seek 43 63.3± 31.4 29 4.1± 9.1 39.4± 19.8
soccer - - 14 4.3± 6.5 4.3± 6.5

7 loses at X
chess 15 91.3± 7.3 - - 91.3± 7.3

hide_and_seek 45 26.4± 4.1 30 10.0± 6.8 19.9± 3.2
soccer - - 15 92.7± 7.0 92.7± 7.0

8 X is played
chess 14 99.3± 2.1 - - 99.3± 2.1

hide_and_seek 43 97.9± 2.8 29 96.2± 4.5 97.2± 2.4
soccer - - 14 85.0± 17.3 85.0± 17.3

6. Semantic Anomalies

The last test condition investigates whether the model can produce sentences for
semantic representations that violate rules of the microworld. These representations are
not only outside of the training set but also outside of the set of possible elements in the
input space. Intuitively, this condition addresses the human ability to produce sentences
for situations that are not real or in contradiction to common world knowledge [41].

According to the rules of the microworld, each game is played only in specific locations:
chess in the bedroom, soccer in the street, and hide and seek in all locations except in the
street. We constructed representations that violate these rules by taking the semantic
representations related to the sentences with the pattern "X plays Y" where X is a person
and Y is a game. Then, we set to 0 all dimensions related to locations (basic events of the
form place(X, Z) where Z is a location that is not the target one). Finally, the target location
(which violates the rules) is set to 1.0 for the protagonist of the situation (X). In this way, the
original semantic representations are mostly preserved, except that all people are placed in
the target location.

For example, the representation for “Charlie plays chess in the playground.” is the
same as the one for “Charlie plays chess in the bedroom.”, except that the dimensions re-
lated to locations would place “Charlie” in the playground and would remove all activation
related to other people in other places.

Here, the training set is the full dataset, and the test items are the newly created
representations that violate the rules. We trained three instances of the model and manually
analyzed their output.

Results

The sentences produced show that the model is uncertain about the meaning of the
input. In most cases the model produces the usual place for the game (bedroom for chess,
street for soccer), or in the case of hide and seek, the model avoids expressing the location.
In all cases, the sentences produced follow the rules of the microworld and avoid aspects
that would contradict those rules.

During training, the model learns, for example, that soccer is always played in the
street, so if someone is playing soccer, he/she is in the street. Then, if a semantics indicates
that someone plays soccer in the playground, according to the microworld, either that
person is not playing soccer or he/she is in the street. The sentences produced follow one
of these options but not both.

It is debatable whether these outputs are correct or not. If we consider the microworld
rules as unbreakable, then the model is correct avoiding sentences that make no sense



Information 2021, 12, 329 16 of 24

in this microworld. However, if we consider that the semantic representation should be
followed, no matter the implications in the microworld, then the model was incorrect as it
was unable to follow those representations.

If we expect the model to produce sentences that break the rules, then perhaps we need
to relax those rules. In the real world, some events imply certain other events; however,
most events are independent of each other. Moreover, a person’s knowledge is limited, and
one cannot form very strong rules about the world, since for each rule, many exceptions
exist. In contrast, with the limited set of events that the model experiences, the rules that the
model learns could be considered as “hard”, as during training, it receives no information
leading to believe that those rules can be broken.

We should also consider that the dimensions in the semantic representations are not
independent. Indeed, each game entails certain locations. We altered the values of the
location dimensions, but the model still knows the game, which implies different locations,
and which can potentially cancel the effect of our alterations. If we wish the model to
produce sentences breaking these entailments, it would need to be rewired such that each
input dimension is independent, and thus, altering one dimension would not affect the
model’s behavior with respect to the others.

7. Discussion
7.1. Semantic Systematicity

Given the wide success of artificial neural networks in contemporary systems of
computer vision and natural language processing, among other applications (e.g., [42]),
it is evident that artificial neural networks can generalize. Nonetheless, here we address
semantic systematicity, which is argued to be a sign of human-level systematicity [14,15],
and to this date it is still not clear to what extent connectionist approaches can achieve it.
If a connectionist model shows semantic systematicity, it would mean that connectionist
architectures are capable of human-level systematicity, and therefore, they can be plausible
models of human cognition.

We approached this from a sentence production perspective, presenting a model that
learns to produce sentences from DSS representations, generalizing to novel sentences and
situations. In all test conditions, the model could produce new combinations of words that
follow the syntactic patterns of the microlanguage, while being coherent with the input
semantics, thereby showing syntactic generalization. Crucially, the model also achieves
semantic generalization, as demonstrated in test conditions 3 and 5, where the model
was fed with novel semantic representations, so any correct output can be regarded as
arising from the regularities within the microworld from which the DSS representations
are derived—cf. the comprehension results by Frank et al. [23].

In Conditions 4 and 5, where a passive sentence is queried but the microlanguage does
not define such structures, we see a behavior that could not be addressed by a classical
symbolic model, at least not intuitively. A symbolic model operates over discrete symbols
using symbolic rules that work in a predefined and precise way. Such a model would find
difficulties with items that do not fit into any of the discrete and predefined symbolic units,
and furthermore, it would not be able to process combinations of symbols that are not
defined by any of the predefined rules. In other words, a symbolic model would be able to
show a perfect combinatorial behavior but would be unable to handle representations for
which no symbolic rule is defined. The model proposed here does not have that issue; it can
also operate over discrete units, in this case words, but the semantic space is continuous,
where unknown areas can still be interpreted. As one can see, the sentences produced by
the model for these conditions are in general semantically and syntactically correct.

The fact that difficulties arise encoding highly similar situations suggests that the
model can reconstruct the topography of the semantic space, clustering situations that are
related. At the same time, the model assigns linguistic structures to each area in this space
such that semantically similar situations are assigned linguistically similar realizations.
Since the semantic space is continuous, in theory the model should be able to generate
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sentences for unseen areas as long as it is given enough information during training in
order to reconstruct the semantic space and the mapping between semantics and linguistic
realizations, as proposed by Frank et al. [23].

The results show that this is indeed the case. Conditions 1 and 2 demonstrated the
model can generate sentences for semantically known situations but with a different voice
(active/passive), showing syntactic systematicity. Conditions 3 and 5 demonstrated that
the model can generate sentences for unseen areas in the semantic space, thus showing
semantic systematicity. Conditions 4 and 5, where passive sentences are queried, demon-
strated that the model is able to produce coherent sentences even if the grammar that
was used to build the dataset does not associate passive constructions to these situations.
Furthermore, the model is not only able to produce a single novel sentence for a novel
semantic representation, but it can also produce most (if not all) of the sentences that are
related to a given semantics.

Regarding the production of words in novel syntactic roles, our model showed a lower
performance; however, it was still able to produce the expected patterns in the majority of
the situations. We saw that the presence of competitors reduced the percentage of times
the model produced the expected patterns; this might be related to the form of the softmax
activation function of the output layer, which normalizes the activations. We leave to future
work experiments where the output units are independent of each other.

Finally, regarding the production of sentences describing situations that violate the
rules of the microworld, we saw that the model was unable to produce such sentences. In
this case, it is possible that the structural regularities that permitted the model to generalize
in the other conditions are the ones preventing the model from producing sentences that
violate the rules of the microworld. We speculate that a microworld with less strict rules
would generate representations where pairs of events that never or almost never co-occur
are still interpretable by a neural network. We leave this scenario also for future work.

7.2. Systematicity Requirements

Theoretical analyses show that multilayer perceptrons are universal function ap-
proximators [43] and that recurrent neural networks are at least as powerful as a Turing
Machine [44,45]. Then, the problem of systematicity is not about computational power but
about learning. While a set of connection weights with systematicity exists for any function,
the difficulty to learn such weights depends on different factors, such as the complexity of
the function, the input/output spaces and the representations that are used.

Without discarding the impact that certain architectures have on facilitating gener-
alization, we recognize some conditions of the input and output representations that are
necessary and that could index the difficulty for learning a particular behavior.

A first condition is that the representations must contain information about what is
represented, such that the model can draw relations with other representations, whether
seen or not. Analogous representations, as the ones used here, show and depend on
the nature of what they represent, where relations among items are apparent in their
representations (see [23]). Thus, similar entities have similar representations.

A related aspect is informativity. A representation is informative if it contains the
information necessary for the task. The 25,000-dimensional situation vectors defined by
Frank et al. [23] contain very detailed information; however, after the dimensionality
reduction used to create the 150-dimensional situation vectors, some aspects are lost,
reducing the performance of the model. In turn, belief vectors also do not contain as
detailed information as the original 25,000-dimensional situation vectors, only representing
averages over observations. In both cases there is information loss; nonetheless, the belief
vectors still contained the required information.

Another condition is that the input space has to be structured, such that regularities in
the training set can be used to recognize new instances. In other words, the nature of an
item should be interpretable by looking at items in the spatial vicinity. If the input space is
too erratic, the model would have difficulties interpreting inputs in new areas.
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The space of input representations of our model, which is defined by all possible
combinations of basic events, is structured in the sense that some pairs of basic events
always co-occur, some are not allowed and some others co-occur with certain probabilities.
These regularities are recognized in training, allowing the model to infer information about
unseen events.

The last condition we recognize is that the function to be learned should be predictable
with respect to the input space, such that the processing for an input can be inferred by
looking at the processing for similar inputs. In other words, similar inputs should be
processed similarly.

In our case, the output sentences have regularities as they were all constructed with
the same grammar, defining a space where some constructions are allowed and some are
not. These regularities allow the model to learn the syntactic patterns of the microlanguage.
Furthermore, the mapping between semantic representations and sentences is such that
similar semantic representations are processed similarly, as demonstrated by the errors
performed by the model. These regularities in the mapping of inputs to outputs permitted
the model to process correctly novel inputs.

In sum, for systematicity to be possible, the representations should be informative,
items should be interpretable by looking at similar items and similar items should be pro-
cessed similarly. As we saw, these requirements were met by our model’s inputs/outputs,
which permitted a successful learning for most of our test conditions.

7.3. Recent Related Work

Although the systematicity debate has been ongoing for several decades, the relatively
recent success of deep learning has brought interest again into this topic. As a result, several
rule-based generated datasets have been proposed to test and measure compositional
generalization (e.g., [46–48]).

Lake and Baroni [49] presented SCAN, which is a dataset where compositional navi-
gation instructions (e.g., “jump twice”) are mapped to sequences of actions (e.g., “JUMP
JUMP”), and where different training/test splits assess different types or levels of system-
aticity. This dataset has been extended [50,51] and used to test systematicity with several
sequence to sequence RNN architectures (e.g., [49]) and convolutional neural networks [52].
Moreover, specially designed neural architectures have been proposed to solve some of
the tests in SCAN [22,53], which are similar to the dual-path model of Chang et al. [26],
separating syntax from semantics.

Gordon et al. [54] presents a permutation equivariant model that by design builds
word embeddings such that words that are to be treated similarly (e.g., all verbs, or “left”
and “right”) are linked to similar embeddings, even if during training they appear with a
different distribution. This model achieves excellent performance in some of the test splits
of SCAN.

An important difference between the methods used by recent studies and ours is that
our task is not a sequence to sequence one where an encoder generates an intermediate
representation of the input, which is later used by a decoder to generate the desired
outcome. We focus on the second step, that is, the generation of a sentence given a
semantics. In our case, the semantic space is constructed prior to training of the production
model and therefore its structure is independent of the statistical properties of training/test
splits. Thus messages that are to be treated similarly have similar representations even if
during training they appear with different distributions, as in Gordon et al. [54].

Kim and Linzen [55] proposed COGS, which is a dataset that maps sentences to their
logical form. COGS differs from SCAN in that the former is more focused on linguistics,
containing different linguistic phenomena related also to different systematicity levels.
An important difference between the DSS representations of Frank et al. [23] and COGS
is that while they both map sentences to their semantics, the DSS representations are
completely grounded on the microworld (the semantic representations of COGS are logical
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formulas), reflecting the regularities of the microworld, which we argue is important to
achieve systematicity, as it provides structure to the semantic space.

Other ways in which systematicity has been approached is through sophisticated
training methods such as data augmentation [56] and meta-learning [57,58].

The general conclusion of these studies is that systematicity is not a property that
modern deep learning methods achieve by default (e.g., [21]), that some architectures and
training methods help (e.g., [22,53,57]) and that some compositional tasks are more difficult
than others (e.g., [55]). We aim to contribute to this topic by focusing on the importance
of the representations themselves in achieving systematicity, perhaps in a similar way
as Gordon et al. [54], and also by studying the opposite direction of semantic parsing:
sentence production.

8. Conclusions

We presented a sentence production model that receives as input the distributed
semantic representations of the Distributed Situation Space model (DSS, [23]). This model
was tested to see first whether it could learn to produce sentences with these representations,
showing that indeed that was the case. An error analysis revealed that the errors were
related to highly similar situations, reproducing some findings of the speech error literature
and reflecting the statistical patterns of the training set.

In addition, the model was tested to see whether it could exhibit systematicity. The
results showed that the model could handle and produce novel sentences for novel message
representations in several test conditions. Further, the model was able to produce passive
sentences for areas in the semantic space for which the microlanguage does not define
passive sentences, and also sentences with words in novel syntactic roles, exhibiting
systematicity. Furthermore, the model could produce not only one sentence but most
if not all of the sentences that were related to a particular semantics, demonstrating a
systematic behavior.

The results of these tests were partly due to the architecture but more importantly
to the semantic representations that were used as input for the model. These are points
in a multidimensional continuous space, containing rich information about the situation
that a sentence describes and reflecting the structure of the microworld from which they
are derived.

Finally, we propose some conditions about the nature of the function to be learned
and the representations used by a model in order to learn a particular function and exhibit
systematicity. Namely, similar items should have similar informative representations, and
thus they should also be interpreted and processed similarly. As we saw, these conditions
were met by the function and the representations that we used, permitting the model to
learn the expected behavior.
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Appendix A. Grammar of the Microlanguage

Variable n ∈ {person, game, toy} denotes nouns; v ∈ {play, win, lose} denotes verbs;
VP=verb phrase; APP=adverbial/prepositional phrase; PP=prepositional phrase. Items in
square brackets are optional.

S −→ NnVPn,v APPn,v.

Nperson −→ charlie|heidi|sophia|someone|the boy|a girl

Ngame −→ chess|hide_and_seek|soccer| f ootball|a game

Ntoy −→ a puzzle|a ball|a doll|a jigsaw|a toy

VPperson,play −→ plays

VPperson,win −→ wins|beats Nperson

VPperson,lose −→ loses|loses to Nperson

VPgame,play −→ is played

VPgame,win −→ is won

VPgame,lose −→ is lost

VPtoy,play −→ is played with

APPperson,play −→ [Ngame][Manner][Place]|PPtoy [Place]|Place PPtoy

APPperson,win −→ [PPmanner][PPgame][Place]|PPgame PPmanner|
Place PPgame

APPperson,lose −→ [PPgame][Place]|Place PPgame

APPgame,play −→ [Manner][Person][Place]

APPgame,win −→ [Manner][Person][Place]

APPgame,lose −→ [PPperson][Place]

APPtoy,play −→ [PPperson][Place]|Place PPperson

Manner −→ well|badly

Place −→ inside|outside|PPplace

PPplace −→ in the bathroom|in the shower|in the bedroom|in the street|
in the playground

PPperson −→ by Nperson

PPgame −→ at Ngame

PPtoy −→ with Ntoy

PPmanner −→ with ease|with di f f iculty

Appendix B. Training Procedure

All weights on the projections between layers are initialized with random values
drawn from a normal distribution N (0, 0.1). The weights on the bias projections are
initialized to zero. The model is trained using cross-entropy backpropagation [36], where
at each time step the model is expected to produce the word of the training sentence that
corresponds to that time step. Weights are updated accordingly after each word in the
sentence of each pair (DSS, sentence) in the training set. Note that each item of this set
consisted of a DSSi paired with one of the possible sentence realizations describing the
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state of affairs represented in DSSi. Hence, during each epoch, the model sees all the
possible realizations of DSSi contained in the training set.

During training, the monitoring units are set at time t to what the model was supposed
to produce at time t − 1 (zeros for t = 0). This reflects the notion that during training
the word in the training sentence at time-step t− 1 should be the one informing the next
time step, regardless of the previously produced (and possibly different) word (teacher
forcing, [59]). During testing, the monitoring units are set to 1.0 for the word that was
actually produced and 0.0 everywhere else.

Training occurs for a maximum of 200 epochs. Each epoch consists of a full presenta-
tion of the training set, which is randomized before each epoch. An initial learning rate
of 0.124 is employed, which is halved each time there is no improvement of performance
on the training set during 15 epochs. No momentum is used. Finally, training halts if the
maximum number of epochs is reached or if there is no performance improvement on the
training set over a 40-epoch interval.

Appendix C. Activation Threshold

A given threshold can be evaluated in terms of precision and recall while trying to
obtain all and only the possible sentences given a semantics. In these terms, the following
variations were tested:

• Fixed:
τ = ρ (A1)

• Entropy:
τ = ρ ∗E[logp(w)] (A2)

• Ratio to Maximum:
τ = ρ ∗max p(w) (A3)

where ρ manipulates how strict the threshold should be for all situations, and p(w) is
the probability (activation) of word w at the output layer. The first formulation sets a
common threshold for all productions. The second one allows τ to change according to the
distribution of activation across all words at a specific derivation point. Finally, the third
formulation allows τ to change according to the activation of each word compared to the
maximum word activation at that point.

These definitions of τ were used to produce multiple sentences for each semantic rep-
resentation DSSi in the training set, manipulating the value of ρ. For each DSSi, precision,
recall and f-score of the set of sentences generated by the model were calculated, with
respect to the set ϕi. Then, these values were averaged across the semantic representations
in the training set. For these calculations, a sentence produced by the model was only
considered if it was a perfect match with a sentence in ϕi, consequently discarding all
partial matches.

For each formulation and for each value of ρ, Figure A1 shows average precision,
recall and f-score averaging across the 10 folds used for Conditions 1-6. We see that the
behavior is almost identical between the formulations, although in different scales. This
suggests that the definition of τ is not sensitive to the form of the output distribution and
that a global fixed threshold may be sufficient.

From Figure A1, we also notice that the model achieves a very high recall when setting
τ to relatively low values. In this case, precision is rather low, but its value is still high
enough to suggest that the model is heavily pruning the derivation forest to only the
sentences that are related to the given semantics. Finally, we also see that the maximum
f-score value is around 92.5%, meaning that the model is able to a very high degree to
reconstruct the whole set of training sentences.

Since the formulation of τ is rather stable, we set τ as a fixed threshold, and given
the shape of the curve, we set it to the value of 0.12, which has a high recall (98%) and a
relatively high precision (89%). A high recall is preferred in order to produce a relatively
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large number of sentences that could give insight into the production mechanism of the
model. This value was used for the multiple sentence production analyses.

Figure A1. Precision, recall and f-score for different values of ρ and for different formulations of τ on the training set.

Appendix D. Undergenerations

Undergenerations are sentences the model preferred not to produce, which we can
judge in relation to those that were actually produced. Thus, the undergenerated sentences
for three folds in multiple sentence production were compared against the ones produced.
The undergenerations were related to 38 situations, following clear patterns:

• Overspecification Preferred (28 situations, 43 sentences, Examples 1–3 in Table A1):
These sentences are correct and exact but they leave some aspects implicit. For
example, “the boy plays well in the playground” implies that hide and seek is the
game played because that is the only game that can be played in the playground.
However, the model would prefer to say explicitly: “the boy plays hide_and_seek
well in the playground. ”

• Underspecification Preferred (4 situations, 54 sentences, Example 4 in Table A1):
The model prefers to be ambiguous, leaving details implicit. This happens rarely,
producing “a girl” instead of “Sophia”, “someone” instead of “a girl” and “toy”
instead “puzzle/jigsaw”.

• Constituent Order (16 situations, 110 sentences, Examples 5–7 in Table A1): Sen-
tences with the same constituents but in different order. Location information is
preferred at the end (13 situations, 48 sentences, Example 5 in Table A1), the model
prefers to mention the winners first (3 situations, 62 sentences, Example 6 in Table
A1), and there was an instance where “with ease” was preferred early.

• Winner/Loser Location (3 situations, 43 sentences, Example 8 in Table A1): Situa-
tions in which hide and seek is played inside, someone wins/loses and the location of
the winner/loser is exchanged, producing only incorrect sentences.

Table A1. Representative examples of undergeneration.

Model’s Output Undergenerated

1 the boy plays hide_and_seek well in the playground. the boy plays well in the playground.
2 a game is won with ease by someone in the bedroom. a game is won with ease in the bedroom.
3 Charlie plays chess well in the bedroom. Charlie plays chess well.

4 a girl plays inside with a puzzle. Sophia plays inside with a puzzle.

5 the boy loses at soccer in the street. the boy loses in the street at soccer.
6 Heidi beats Charlie at chess. Charlie loses to Heidi at chess.
7 Charlie wins with ease at soccer. Charlie wins at soccer with ease.

8 Heidi loses to Sophia in the bathroom. Sophia beats Heidi in the bathroom.
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Regarding overspecification, the related linguistic patterns are more frequent. For
example, naming the specific game can be omitted only when soccer is played in the street or
hide and seek is played in the playground. The constituent order also follows the statistics
of the language. For example, among all the sentences that contain “inside”/“outside”,
76.48% mention it at the end. In general, the model’s preferences reflect the statistical
properties of the training sentences.
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