NCL20 Neurocognition of Language (Winter 2020/21)

synopsis


The ultimate aim of the neurocognition of language is to understand how, when, and where in the brain meaning is computed from linguistic input. In this seminar, we will first explore:

From here, we will then develop the course according to your interests. Each of you will first give one oral presentation on a topic/paper of choice (in consultation). For the remaining slots (if any), we will collectively pick papers that we will discuss reading group style.

course overview


Neurocognition of Language is a seminar taught in the Department of Language Science and Technology at Saarland University. It is open for both (advanced) bachelor-level and master-level students.

Lecturer: Harm Brouwer <me[at]hbrouwer.eu>

Time: Tuesday 12:15-13:45
Place: Online (Microsoft Teams)
Start: 03.11.20

Credits: 4 CP (presentation), 7 CP (presentation + term paper)

Registration: Send me an email to enrol for the course

schedule


This is the course schedule. For the first lectures, see below for suggested background literature.

Date Topic Presenter
03.11.20 Introduction to the Neurocognition of Language (Brief) Harm Brouwer
10.11.20 Electrophysiology of Language Processing I Harm Brouwer
17.11.20 Electrophysiology of Language Processing II Harm Brouwer
24.11.20 Aligning Electrophysiology and Functional Neuroanatomy Harm Brouwer
01.12.20 Neurocomputational Modeling of Laguage Processing Harm Brouwer
08.12.20 <tbd> <tbd>
15.12.20 <tbd> <tbd>
22.12.20 (no class)
29.12.20 (no class)
05.01.21 <tbd> <tbd>
12.01.21 <tbd> <tbd>
19.01.21 <tbd> <tbd>
26.01.21 <tbd> <tbd>
02.02.21 <tbd> <tbd>

suggested literature


This is a inexhaustive list of suggested literature organized by lecture. For each lecture, the list is ordered in terms of the relevance/closeness of the articles to the material presented in that lecture. Articles marked with an asterisk (*) are (co-)authored by me.

03.11.20

  1. Hagoort, P. (2019). The neurobiology of language beyond single-word processing. Science 36(6461), pp. 55-58. doi: 10.1126/science.aax0289

10.11.20

  1. Kutas, M., van Petten, C., & Kluender, R. (2006). Psycholinguistics Electrified II: 1994-2005. In M. J. Traxler & M. A. Gernsbacher (Eds.), Handbook of psycholinguistics, 2nd ed. pp. 659-724. New York: Elsevier.
  2. Gazzaniga, M. S., Ivry, R. B., and Mangun, G. R. (2014). Methods of Cognitive Neuroscience. In: Gazzaniga, M. S., Ivry, R. B., and Mangun, G. R. (Eds.), Cognitive Neuroscience: The Biology of the Mind, 4th ed., pp. 71-119. New York: W. W. Norton & Company.

17.11.20

  1. *Brouwer, H., Fitz, H. and Hoeks, J. C. J. (2012). Getting real about Semantic Illusions: Rethinking the functional role of the P600 in language comprehension. Brain Research, 1446, pp. 127-143. doi: 10.1016/j.brainres.2012.01.055
  2. Kuperberg, G. R. (2007). Neural mechanisms of language comprehension: Challenges to syntax. Brain Research, 1146, pp. 23-49. doi: https://doi.org/10.1016/j.brainres.2006.12.063
  3. Bornkessel-Schlesewsky, I., & Schlesewsky, M. (2008). An alternative perspective on semantic P600 effects in language comprehension. Brain Research Reviews, 59(1), 55-73. doi: https://doi.org/10.1016/j.brainresrev.2008.05.003
  4. Delogu, F., Brouwer, H., and Crocker, M. W. (2019). Event-related potentials index lexical retrieval (N400) and integration (P600) during language comprehension. Brain and Cognition, 135. doi: 10.1016/j.bandc.2019.05.007

24.11.20

  1. *Brouwer, H. and Hoeks J. C. J. (2013). A Time and Place for Language Comprehension: Mapping the N400 and the P600 to a Minimal Cortical Network. Frontiers in Human Neuroscience 7:758. doi: 10.3389/fnhum.2013.00758
  2. Baggio, G. and Hagoort, P. (2011). The balance between memory and unification in semantics: A dynamic account of the N400. Language and Cognitive Processes, 26:1338-1367.
  3. Brouwer, H. and Crocker, M. W. (2017). On the proper treatment of the N400 and P600 in language comprehension. Frontiers in Psychology 8:1327. doi: 10.3389/fpsyg.2017.01327

01.20.20

  1. *Brouwer, H., Crocker M. W., Venhuizen, N. J., and Hoeks, J. C. J. (2017). A Neurocomputational Model of the N400 and the P600 in Language Processing. Cognitive Science, 41(S6), pp. 1318-1352. doi: 10.1111/cogs.12461
  2. Laszlo, S. and Plaut, D. C. (2012). A neurally plausible parallel distributed processing model of event-related potential word reading data. Brain and Language, 120(3):271-281.
  3. Crocker, M. W., Knoeferle, P., and Mayberry, M. R. (2010). Situated sentence processing: The coordinated interplay account and a neurobehavioral model. Brain and Language, 112(3):189-201.